1887

Abstract

In , osmoregulated periplasmic glucans (OPGs) are highly substituted by phosphoglycerol, phosphoethanolamine and succinyl residues. A two-step model was proposed to account for phosphoglycerol substitution: first, the membrane-bound phosphoglycerol transferase I transfers residues from membrane phosphatidylglycerol to nascent OPG molecules; second, the periplasmic phosphoglycerol transferase II swaps residues from one OPG molecule to another. Gene was reported to encode phosphoglycerol transferase I. In this study, we demonstrate that the periplasmic enzyme II is a soluble form of the membrane-bound enzyme I. In addition, timing of OPG substitution was investigated. OPG substitution by succinyl residues occurs rapidly, probably during the backbone polymerization, whereas phosphoglycerol addition is a very progressive process. Thus, both phosphoglycerol transferase activities appear biologically necessary for complete OPG substitution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013169-0
2008-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/476.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013169-0&mimeType=html&fmt=ahah

References

  1. Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S. R., Griffiths-Jones S., Howe K. L., Marshall M., Sonnhammer E. L. L. 2002; The Pfam protein families database. Nucleic Acids Res 30:276–280
    [Google Scholar]
  2. Bell R. M. 1974; Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn -glycerol-3-phosphate acyltransferase Km mutant. J Bacteriol 117:1065–1076
    [Google Scholar]
  3. Bohin J.-P., Kennedy E. P. 1984; Regulation of the synthesis of membrane-derived oligosaccharides in Escherichia coli . Assay of phosphoglycerol transferase I in vivo . J Biol Chem 259:8388–8393
    [Google Scholar]
  4. Bohin J.-P., Lacroix J.-M. 2006; Osmoregulation in the periplasm. In The Periplasm pp 325–341 Edited by Ehrmann M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  6. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane protein: the dense alignment surface method. Protein Eng 10:673–676
    [Google Scholar]
  7. Debarbieux L., Bohin A., Bohin J.-P. 1997; Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli . J Bacteriol 179:6692–6698
    [Google Scholar]
  8. Galperin M. Y., Bairoch A., Koonin E. V. 1998; A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci 7:1829–1835
    [Google Scholar]
  9. Goldberg D. E., Rumley M. K., Kennedy E. P. 1981; The biosynthesis of membrane-derived oligosaccharides: a periplasmic phosphoglycerol transferase. Proc Natl Acad Sci U S A 78:5513–5517
    [Google Scholar]
  10. Jackson B. J., Kennedy E. P. 1983; The biosynthesis of membrane-derived oligosaccharides: a membrane-bound phosphoglycerol transferase. J Biol Chem 258:2394–2398
    [Google Scholar]
  11. Jackson B. J., Bohin J.-P., Kennedy E. P. 1984; Biosynthesis of membrane derived oligosaccharides: characterization of opgB mutants defective in phosphoglycerol transferase I activity. J Bacteriol 160:976–981
    [Google Scholar]
  12. Kennedy E. P. others 1996; Membrane derived oligosaccharides (periplasmic beta-d-glucans) of Escherichia coli . In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp 1064–1074 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole Escherichia coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  14. Lacroix J.-M., Tempête M., Menichi B., Bohin J.-P. 1989; Molecular cloning and expression of a locus ( mdoA ) implicated in the biosynthesis of the membrane-derived oligosaccharides in Escherichia coli . Mol Microbiol 3:1173–1182
    [Google Scholar]
  15. Lacroix J.-M., Loubens I., Tempête M., Menichi B., Bohin J.-P. 1991; The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol 5:1745–1753
    [Google Scholar]
  16. Lacroix J.-M., Lanfroy E., Cogez V., Lequette Y., Bohin A., Bohin J.-P. 1999; The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J Bacteriol 181:3626–3631
    [Google Scholar]
  17. Lanfroy E., Bohin J.-P. 1993; Physical map location of the Escherichia coli gene encoding phosphoglycerol transferase I. J Bacteriol 175:5736–5737
    [Google Scholar]
  18. Loubens I., Debarbieux L., Bohin A., Lacroix J.-M., Bohin J.-P. 1993; Homology between a genetic locus ( mdoA ) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus ( hrpM ) controlling pathogenicity of Pseudomonas syringae . Mol Microbiol 10:329–340
    [Google Scholar]
  19. Masai H., Arai K.-I. 1988; Operon structure of dnaT and dnaC genes essential for normal and stable DNA replication of Escherichia coli chromosome. J Biol Chem 263:15083–15093
    [Google Scholar]
  20. Miller J. H. 1992 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Miller K. J., Kennedy E. P. 1987; Transfer of phosphoethanolamine residues from phosphatidylethanolamine to the membrane-derived oligosaccharides of Escherichia coli . J Bacteriol 169:682–686
    [Google Scholar]
  22. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  23. Racker E. 1967; Resolution and reconstitution of the inner mitochondrial membrane. Fed Proc 26:1335–1340
    [Google Scholar]
  24. Roset M. S., Ciocchini A. E., Ugalde R. A., Inon de Iannino N. 2006; The Brucella abortus cyclic beta-1,2-glucan virulence factor is substituted with O -ester-linked succinyl residues. J Bacteriol 188:5003–5013
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Van Golde L. M. G., Schulman H., Kennedy E. P. 1973; Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli . Proc Natl Acad Sci U S A 70:1368–1372
    [Google Scholar]
  27. Vieira J., Messing J. 1982; The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  28. Vinopal R. T., Hillman J. D., Schulman H., Reznikoff W. S., Fraenkel D. G. 1975; New phosphoglucose isomerase mutants of Escherichia coli . J Bacteriol 122:1172–1174
    [Google Scholar]
  29. Wang P., Ingram-Smith C., Hadley J. A., Miller K. J. 1999; Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic beta-glucan biosynthesis. J Bacteriol 181:4576–4583
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013169-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013169-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error