1887

Abstract

Plasminogen binding by bacteria is a virulence factor important for the entry and dissemination of bacteria in the body. A wide variety of bacteria bind plasminogen, including both organisms causing disease and components of the normal oral flora. The purpose of this study was to examine the characteristics of plasminogen binding by six clinical isolates of oral streptococci from both dental plaque and inflammatory lesions. All the strains bound plasminogen with approximately the same affinity, and binding was specific and lysine-dependent as evidenced by its inhibition by ϵ-aminocaproic acid. All of the test strains were capable of activating bound plasminogen to plasmin without the addition of a plasminogen activator, and subsequent analysis revealed the presence of streptokinase in all strains. However, the streptococci exhibited fibrinolytic activity only in the presence of plasminogen and this could be inhibited by the addition of ϵ-aminocaproic acid. SDS-PAGE and 2D gel electrophoresis coupled with plasminogen ligand blotting showed that only a subset of the total proteins (2–15) were involved in the binding of plasminogen. Partial identification of the binding proteins revealed that four glycolytic enzymes, enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase, were predominant in binding plasminogen. The binding of plasminogen by bacteria from pus did not differ from that of the strains from supragingival plaque. The findings illustrate how apparently innocuous commensal bacteria are capable of utilizing a mechanism that is generally regarded as being of importance to pathogenicity and suggest an additional role of plasminogen binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013235-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/924.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013235-0&mimeType=html&fmt=ahah

References

  1. Boyle M. D., Lottenberg R. 1997; Plasminogen activation by invasive human pathogens. Thromb Haemost 77:1–10
    [Google Scholar]
  2. Castellino F. J., Violand B. N. 1979; The fibrinolytic system – basic considerations. Prog Cardiovasc Dis 21:241–254
    [Google Scholar]
  3. Chavez de Paz L., Svensäter G., Dahlén G., Bergenholtz G. 2005; Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:232–241
    [Google Scholar]
  4. Cole J. N., Ramirez R. D., Currie B. J., Cordwell S. J., Djordjevic S. P., Walker M. J. 2005; Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 73:3137–3146
    [Google Scholar]
  5. Coleman J. L., Benach J. L. 1999; Use of the plasminogen activation system by microorganisms. J Lab Clin Med 134:567–576
    [Google Scholar]
  6. Coleman J. L., Benach J. L. 2000; The generation of enzymatically active plasmin on the surface of spirochetes. Methods 21:133–141
    [Google Scholar]
  7. Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. 1997; Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89:1111–1119
    [Google Scholar]
  8. Collen D. 2001; Ham–Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology (Am Soc Hematol Educ Program)1–9
    [Google Scholar]
  9. Crowe J. D., Sievwright I. K., Auld G. C., Moore N. R., Gow N. A., Booth N. A. 2003; Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651
    [Google Scholar]
  10. Darenfed H., Grenier D., Mayrand D. 1999; Acquisition of plasmin activity by Fusobacterium nucleatum subsp. nucleatum and potential contribution to tissue destruction during periodontitis. Infect Immun 67:6439–6444
    [Google Scholar]
  11. Degen J. L., Bugge T. H., Goguen J. D. 2007; Fibrin and fibrinolysis in infection and host defence. J Thromb Haemost 5 ( Suppl. 1 )24–31
    [Google Scholar]
  12. Derbise A., Song Y. P., Parikh S., Fischetti V. A., Pancoli V. 2004; Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72:94–105
    [Google Scholar]
  13. Eberhard T., Kronvall G., Ullberg M. 1999; Surface bound plasmin promotes migration of Streptococcus pneumoniae through reconstituted basement membranes. Microb Pathog 26:175–181
    [Google Scholar]
  14. Grenier D., Bouclin R. 2006; Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane. Oral Microbiol Immunol 21:319–325
    [Google Scholar]
  15. Hasona A., Zuobi-Hasona K., Crowley P. J., Abranches J., Ruelf M. A., Bleiweis A. S., Brady L. J. 2007; Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol 189:1219–1230
    [Google Scholar]
  16. Hoshino T., Fujiwara T., Kilian M. 2005; Use of phylogenetic and phenotypic analyses to identify non-hemolytic streptococci from bacteremic patients. J Clin Microbiol 43:6073–6085
    [Google Scholar]
  17. Hughes M. J., Moore J. C., Lane J. D., Wilson R., Pribul P. K., Younes Z. N., Dobson R. J., Everest P., Reason A. J. other authors 2002; Identification of major outer surface proteins of Streptococcus agalactiae . Infect Immun 70:1254–1259
    [Google Scholar]
  18. Jones M. N., Holt R. G. 2004; Activation of plasminogen by Streptococcus mutans . Biochem Biophys Res Commun 322:37–41
    [Google Scholar]
  19. Khil J., Im M., Heath A., Ringdahl U., Mundada L., Engleberg N. C., Fay W. P. 2003; Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J Infect Dis 188:497–505
    [Google Scholar]
  20. Kinnby B. 2002; The plasminogen activating system in periodontal health and disease. Biol Chem 383:85–92
    [Google Scholar]
  21. Kinnby B., Lecander I., Martinsson G., Åstedt B. 1991; Tissue plasminogen activator and placental plasminogen activator inhibitor in human gingival fluid. Fibrinolysis 5:239–242
    [Google Scholar]
  22. Lähteenmäki K., Edelman S., Korhonen T. K. 2005; Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85
    [Google Scholar]
  23. Li Z., Ploplis V. A., French E. L., Boyle M. D. 1999; Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 179:907–914
    [Google Scholar]
  24. Lijnen H. R. 2001; Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 86:324–333
    [Google Scholar]
  25. Ling E., Feldman G., Portnoi M., Dagan R., Overweg K., Mulholland F., Chalifa-Caspi V., Wells J., Mizrachi-Nebenzahl Y. 2004; Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298
    [Google Scholar]
  26. Lottenberg R., Minning-Wenz D., Boyle M. D. 1994; Capturing host plasmin(ogen): a common mechanism for invasive pathogens?. Trends Microbiol 2:20–24
    [Google Scholar]
  27. Medved L. V., Solovjov D. A., Ingham K. C. 1996; Domain structure, stability and interactions in streptokinase. Eur J Biochem 239:333–339
    [Google Scholar]
  28. Pancholi V., Fischetti V. A. 1998; Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515
    [Google Scholar]
  29. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567
    [Google Scholar]
  30. Plow E. F., Herren T., Redlitz A., Miles L. A., Hoover-Plow J. L. 1995; The cell biology of the plasminogen system. FASEB J 9:939–945
    [Google Scholar]
  31. Reddy K. N. N., Markus G. 1972; Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase–plasminogen complex. J Biol Chem 247:1683–1691
    [Google Scholar]
  32. Rudney J. D., Chen R. 2006; The vital status of human buccal epithelial cells and the bacteria associated with them. Arch Oral Biol 51:291–298
    [Google Scholar]
  33. Rudney J. D., Chen R., Zhang G. 2005; Streptococci dominate the diverse flora within buccal cells. J Dent Res 84:1165–1171
    [Google Scholar]
  34. Sanderson-Smith M. L., Dowton M., Ranson M., Walker M. J. 2007; The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 189:1435–1440
    [Google Scholar]
  35. Sodeinde O. A., Sample A. K., Brubaker R. R., Goguen J. D. 1988; Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect Immun 56:2749–2752
    [Google Scholar]
  36. Sun H., Ringdahl U., Homeister J. W., Fay W. P., Engleberg N. C., Yang A. Y., Rozek L. S., Wang X., Sjöbring U., Ginsburg D. 2004; Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305:1283–1286
    [Google Scholar]
  37. Svensäter G., Welin J., Wilkins J. C., Beighton D., Hamilton I. R. 2001; Protein expression by planktonic and biofilm cells of Streptococcus mutans . FEMS Microbiol Lett 205:139–146
    [Google Scholar]
  38. Titball R. W., Oyston P. C. F. 2007; A plague upon fibrin. Nat Med 13:253–254
    [Google Scholar]
  39. Walker M. J., McArthur J. D., McKay F., Ranson M. 2005; Is plasminogen deployed as a Streptococcus pyogenes virulence factor?. Trends Microbiol 13:308–313
    [Google Scholar]
  40. Welin J., Wilkins J. C., Beighton D., Svensäter G. 2004; Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl Environ Microbiol 70:3736–3741
    [Google Scholar]
  41. Wilkins J. C., Beighton D., Homer K. A. 2003; Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis . Appl Environ Microbiol 69:5290–5296
    [Google Scholar]
  42. Winram S. B., Lottenberg R. 1998; Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does not reduce plasmin binding to group A streptococci. Microbiology 144:2025–2035
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013235-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error