1887

Abstract

Biofilm formation in is usually associated with the production of the poly--acetylglucosamine (PNAG) exopolysaccharide, synthesized by proteins encoded by the operon. PNAG is a linear -(1-6)-linked -acetylglucosaminoglycan that has to be partially deacetylated and consequently positively charged in order to be associated with bacterial cell surfaces. Here, we investigated whether attachment of PNAG to bacterial surfaces is mediated by ionic interactions with the negative charge of wall teichoic acids (WTAs), which represent the most abundant polyanions of the Gram-positive bacterial envelope. We generated WTA-deficient mutants by in-frame deletion of the gene in two genetically unrelated strains. The Δ mutants were more sensitive to high temperatures, showed a higher degree of cell aggregation, had reduced initial adherence to abiotic surfaces and had a reduced capacity to form biofilms under both steady-state and flow conditions. However, the levels as well as the strength of the PNAG interaction with the bacterial cell surface were similar between Δ mutants and their corresponding wild-type strains. Furthermore, double Δ Δ mutants displayed a similar aggregative phenotype to that of single Δ mutants, indicating that PNAG is not responsible for the aggregative behaviour observed in Δ mutants. Overall, the absence of WTAs in had little effect on PNAG production or anchoring to the cell surface, but did affect the biofilm-forming capacity, cell aggregative behaviour and the temperature sensitivity/stability of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013292-0
2008-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/865.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013292-0&mimeType=html&fmt=ahah

References

  1. Aly R., Shinefield H. R., Litz C., Maibach H. I. 1980; Role of teichoic acid in the binding of Staphylococcus aureus to nasal epithelial cells. J Infect Dis 141:463–465
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M. 2004; A new vector for efficient allelic replacement in naturally non transformable low GC% Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891
    [Google Scholar]
  3. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Gotz F. 1992; Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis . Eur J Biochem 204:1149–1154
    [Google Scholar]
  4. Baddiley J. 2000; Teichoic acids in bacterial coaggregation. Microbiology 146:1257–1258
    [Google Scholar]
  5. Baddiley J., Buchanan J. G., Hardy F. E., Martin R. O., Rajbhandary U. L., Sanderson A. R. 1961; The structure of the ribitol teichoic acid of Staphylococcus aureus H. Biochim Biophys Acta 52:406–407
    [Google Scholar]
  6. Bera A., Biswas R., Herbert S., Kulauzovic E., Weidenmaier C., Peschel A., Gotz F. 2007; Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus . J Bacteriol 189:280–283
    [Google Scholar]
  7. Cerca N., Jefferson K. K., Maira-Litrán T., Pier D. B., Kelly-Quintos C., Goldmann D. A., Azeredo J., Pier G. B. 2007; Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly- N -acetyl- β -(1-6)-glucosamine. Infect Immun 75:3406–3413
    [Google Scholar]
  8. Cobb B. A., Kasper D. L. 2005; Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cell Microbiol 7:1398–1403
    [Google Scholar]
  9. Cobb B. A., Wang Q., Tzianabos A. O., Kasper D. L. 2004; Polysaccharide processing and presentation by the MHCII pathway. Cell 117:677–687
    [Google Scholar]
  10. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Gotz F. 1999; The intercellular adhesion ( ica ) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433
    [Google Scholar]
  11. Cucarella C., Solano C., Valle J., Amorena B., Lasa I. I., Penades J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896
    [Google Scholar]
  12. D'Elia M. A., Millar K. E., Beveridge T. J., Brown E. D. 2006a; Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis . J Bacteriol 188:8313–8316
    [Google Scholar]
  13. D'Elia M. A., Pereira M. P., Chung Y. S., Zhao W., Chau A., Kenney T. J., Sulavik M. C., Black T. A., Brown E. D. 2006b; Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol 188:4183–4189
    [Google Scholar]
  14. Doyle R. J., Chatterjee A. N., Streips U. N., Young F. E. 1975; Soluble macromolecular complexes involving bacterial teichoic acids. J Bacteriol 124:341–347
    [Google Scholar]
  15. Endl J., Seidl H. P., Fiedler F., Schleifer K. H. 1983; Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223
    [Google Scholar]
  16. Fischer W. 1994; Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus . Med Microbiol Immunol 183:61–76
    [Google Scholar]
  17. Gotz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378
    [Google Scholar]
  18. Gross M., Cramton S. E., Gotz F., Peschel A. 2001; Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426
    [Google Scholar]
  19. Grundling A., Schneewind O. 2007; Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus . Proc Natl Acad Sci U S A 104:8478–8483
    [Google Scholar]
  20. Heilmann C., Gerke C., Perdreau-Remington F., Gotz F. 1996a; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282
    [Google Scholar]
  21. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F. 1996b; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20:1083–1091
    [Google Scholar]
  22. Herbert S., Bera A., Nerz C., Kraus D., Peschel A., Goerke C., Meehl M., Cheung A., Gotz F. 2007; Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathogens 3:e102
    [Google Scholar]
  23. Ingavale S. S., Van Wamel W., Cheung A. L. 2003; Characterization of RAT, an autolysis regulator in Staphylococcus aureus . Mol Microbiol 48:1451–1466
    [Google Scholar]
  24. Jefferson K. K., Cramton S. E., Gotz F., Pier G. B. 2003; Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Mol Microbiol 48:889–899
    [Google Scholar]
  25. Joyce J. G., Abeygunawardana C., Xu Q., Cook J. C., Hepler R., Przysiecki C. T., Grimm K. M., Roper K., Ip C. C. other authors 2003; Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus . Carbohydr Res 338:903–922
    [Google Scholar]
  26. Kaplan J. B., Ragunath C., Velliyagounder K., Fine D. H., Ramasubbu N. 2004a; Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636
    [Google Scholar]
  27. Kaplan J. B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J. K., Ramasubbu N. 2004b; Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220
    [Google Scholar]
  28. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β -1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183
    [Google Scholar]
  29. Mack D., Becker P., Chatterjee I., Dobinsky S., Knobloch J. K., Peters G., Rohde H., Herrmann M. 2004; Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus : functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294:203–212
    [Google Scholar]
  30. Maira-Litrán T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B. 2002; Immunochemical properties of the staphylococcal poly- N -acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440
    [Google Scholar]
  31. Maira-Litrán T., Kropec A., Goldmann D. A., Pier G. B. 2005; Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly- N -acetyl- β -(1-6)-glucosamine. Infect Immun 73:6752–6762
    [Google Scholar]
  32. Maki H., Yamaguchi T., Murakami K. 1994; Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus . J Bacteriol 176:4993–5000
    [Google Scholar]
  33. McKenney D., Hubner J., Muller E., Wang Y., Goldmann D. A., Pier G. B. 1998; The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720
    [Google Scholar]
  34. Mckenney D., Pouliot K., Wang V., Murthy V., Ulrich M., Döring G., Lee J. C., Goldmann D. A., Pier G. B. 1999; Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284:1523–1527
    [Google Scholar]
  35. Neuhaus F. C., Baddiley J. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723
    [Google Scholar]
  36. Novick R. P. 1990; The Staphylococcus as a molecular genetic system. In Molecular Biology of the Staphylococcus pp 1–40 Edited by Novick R. P. New York: VCH Publishers;
    [Google Scholar]
  37. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Gotz F. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410
    [Google Scholar]
  38. Prigent-Combaret C., Prensier G., Le Thi T. T., Vidal O., Lejeune P., Dorel C. 2000; Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464
    [Google Scholar]
  39. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W. 2007; The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A 104:8113–8118
    [Google Scholar]
  40. Soldo B., Lazarevic V., Karamata D. 2002a; tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148:2079–2087
    [Google Scholar]
  41. Soldo B., Lazarevic V., Pooley H. M., Karamata D. 2002b; Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA ( yvyH ) encodes the UDP- N -acetylglucosamine 2-epimerase. J Bacteriol 184:4316–4320
    [Google Scholar]
  42. Toledo-Arana A., Merino N., Vergara-Irigaray M., Debarbouille M., Penades J. R., Lasa I. 2005; Staphylococcus aureus develops an alternative, ica -independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187:5318–5329
    [Google Scholar]
  43. Valle J., Toledo-Arana A., Berasain C., Ghigo J. M., Amorena B., Penades J. R., Lasa I. 2003; SarA and not σ B is essential for biofilm development by Staphylococcus aureus . Mol Microbiol 48:1075–1087
    [Google Scholar]
  44. Vinogradov E., Sadovskaya I., Li J., Jabbouri S. 2006; Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341:738–743
    [Google Scholar]
  45. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F. R., Otto M. 2004; A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886
    [Google Scholar]
  46. Wang X., Preston J. F. III, Romeo T. 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734
    [Google Scholar]
  47. Ward J. B. 1981; Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev 45:211–243
    [Google Scholar]
  48. Weidenmaier C., Kokai-Kun J. F., Kristian S. A., Chanturiya T., Kalbacher H., Gross M., Nicholson G., Neumeister B., Mond J. J., Peschel A. 2004; Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245
    [Google Scholar]
  49. Weidenmaier C., Peschel A., Xiong Y. Q., Kristian S. A., Dietz K., Yeaman M. R., Bayer A. S. 2005; Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013292-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error