1887

Abstract

In vibrios, regulation of the -like LuxR transcriptional activators occurs post-transcriptionally via small regulatory RNAs (sRNAs) that destabilize the mRNA at a low cell population, eliminating expression of LuxR. Expression of the sRNAs is modulated by the vibrio quorum-sensing phosphorelay systems. However, mRNA, which encodes a LuxR homologue in , is abundant at low and high cell density, indicating that VanT expression may be regulated via additional mechanisms. In this study, Western analyses showed that VanT was expressed throughout growth with a peak of expression during late exponential growth. VanO induced partial destabilization of mRNA via activation of at least one Qrr sRNA. Interestingly, the sigma factor RpoS significantly stabilized mRNA and induced VanT expression during late exponential growth. This induction was in part due to RpoS repressing expression of Hfq, an RNA chaperone. RpoS is not part of the quorum-sensing regulatory cascade since RpoS did not regulate expression or activity of VanO, and RpoS was not regulated by VanO or VanT. VanT and RpoS were needed for survival following UV irradiation and for pigment and metalloprotease production, suggesting that RpoS works with the quorum-sensing systems to modulate expression of VanT, which regulates survival and stress responses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014167-0
2008-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/767.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014167-0&mimeType=html&fmt=ahah

References

  1. Actis L. A., Tolmasky M. E., Crosa J. H. 1999; Vibriosis. In Fish Diseases and Disorders vol. 3Viral, Bacterial and Fungal Infections pp 523–557 Edited by Woo P. T. K., Bruno E. W. Wallingford: CABI;
    [Google Scholar]
  2. Aguilar C., Bertani I., Venturi V. 2003; Quorum-sensing system and stationary-phase sigma factor ( rpoS ) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC-25416. Appl Environ Microbiol 69:1739–1747
    [Google Scholar]
  3. Andersen J. B., Sternberg C., Poulsen L. K., Bjørn S. P., Givskov M., Molin S. 1998; New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246
    [Google Scholar]
  4. Austin B., Austin D. A. 1999; Pathogenicity. In Bacterial Fish Pathogens: Disease of Farmed and Wild Fish pp 272–275 Chichester: Springer-Praxis;
    [Google Scholar]
  5. Barrios H., Valderrama B., Morett E. 1999; Compilation and analysis of σ 54-dependent promoter sequences. Nucleic Acids Res 27:4305–4313
    [Google Scholar]
  6. Buch C., Sigh J., Nielsen J., Larsen J. L., Gram L. 2003; Production of acylated homoserine lactones by different serotypes of Vibrio anguillarum both in culture and during infection of rainbow trout. Syst Appl Microbiol 26:338–349
    [Google Scholar]
  7. Croxatto A., Chalker V. J., Lauritz J., Jass J., Hardman A., Williams P., Cámara M., Milton D. L. 2002; VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum . J Bacteriol 184:1617–1629
    [Google Scholar]
  8. Croxatto A., Pride J., Hardman A., Williams P., Cámara M., Milton D. L. 2004; A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum . Mol Microbiol 52:1677–1689
    [Google Scholar]
  9. Croxatto A., Lauritz J., Chen C., Milton D. L. 2007; Vibrio anguillarum colonization of rainbow trout integument requires a DNA locus involved in exopolysaccharide transport and biosynthesis. Environ Microbiol 9:370–382
    [Google Scholar]
  10. Denkin S. M., Nelson D. R. 2004; Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol 70:4193–4202
    [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  12. Flavier A. B., Schell M. A., Denny T. P. 1998; An RpoS ( σ S) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearum . Mol Microbiol 28:475–486
    [Google Scholar]
  13. Gottesman S. 2004; The small RNA regulators of Escherichia coli : roles and mechanisms. Annu Rev Microbiol 58:303–328
    [Google Scholar]
  14. Hammer B. K., Bassler B. L. 2007; Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae . Proc Natl Acad Sci U S A 104:11145–11149
    [Google Scholar]
  15. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–484
    [Google Scholar]
  16. Hengge-Aronis R. 2000; The general stress response in Escherichia coli . In Bacterial Stress Responses pp 161–178 Edited by Storze G., Hengge-Aronis R. Washington, DC: American Society of Microbiology;
    [Google Scholar]
  17. Henke J. M., Bassler B. L. 2004; Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi . J Bacteriol 186:6902–6914
    [Google Scholar]
  18. Higgins D. A., Pomianek M. E., Kraml C. M., Taylor R. K., Semmelhack M. F., Bassler B. L. 2007; The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886
    [Google Scholar]
  19. Jeong H. S., Lee M. H., Lee K.-H., Park S.-J., Choi S. H. 2003; SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J Biol Chem 278:45072–45081
    [Google Scholar]
  20. Joelsson A., Kan B., Zhu J. 2007; Quorum sensing enhances stress response in Vibrio cholerae . Appl Environ Microbiol 73:3742–3746
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Larionov A., Krause A., Miller W. 2005; A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62
    [Google Scholar]
  23. Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L. 2004; The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae . Cell 118:69–82
    [Google Scholar]
  24. Lin Y. H., Miyamoto C., Meighen E. A. 2002; Cloning, sequencing, and functional studies of the rpoS gene from Vibrio harveyi . Biochem Biophys Res Commun 293:456–462
    [Google Scholar]
  25. Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K., Iijima Y., Najima M., Nakano M. other authors 2003; Genome sequence of Vibrio parahaemolyticus : a pathogenic mechanism distinct from that of V. cholerae . Lancet 361:743–749
    [Google Scholar]
  26. McDougald D., Kjelleberg S. 2006; Adaptive responses of vibrios. In The Biology of Vibrios, pp 133–155 Edited by Thompson F. L., Austin B., Swings J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. McDougald D., Rice S. A., Kjelleberg S. 2001; SmcR-dependent regulation of adaptive phenotypes in Vibrio vulnificus . J Bacteriol 183:758–762
    [Google Scholar]
  28. McDougald D., Gong L., Srinivasan S., Hild E., Thompson L., Takayama K., Rice S. A., Kjelleberg S. 2002; Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek 81:3–13
    [Google Scholar]
  29. McGee K., Hörstedt P., Milton D. L. 1996; Identification and characterization of additional flagellin genes from Vibrio anguillarum . J Bacteriol 178:5188–5198
    [Google Scholar]
  30. Milton D. L. 2006; Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71
    [Google Scholar]
  31. Milton D. L., Norqvist A., Wolf-Watz H. 1992; Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum . J Bacteriol 174:7235–7244
    [Google Scholar]
  32. Milton D. L., O'Toole R., Hörstedt P., Wolf-Watz H. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum . J Bacteriol 178:1310–1319
    [Google Scholar]
  33. Mukherjee A., Cui Y., Ma W., Liu Y., Chatterjee A. K. 2000; hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N -(3-oxohexanoyl)-l-homoserine lactone. Environ Microbiol 2:203–215
    [Google Scholar]
  34. Neiditch M. B., Federle M. J., Miller S. T., Bassler B. L., Hughson F. M. 2005; Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell 18:507–518
    [Google Scholar]
  35. Nielsen A. T., Dolganov N. A., Otto G., Miller M. C., Wu C. Y., Schoolnik G. K. 2006; RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109
    [Google Scholar]
  36. Norqvist A., Hagström Å., Wolf-Watz H. 1989; Protection of rainbow trout against vibriosis and furunculosis by the use of attenuated strains of Vibrio anguillarum . Appl Environ Microbiol 55:1400–1405
    [Google Scholar]
  37. O'Toole R., Milton D. L., Hörstedt P., Wolf-Watz H. 1997; RpoN of the fish pathogen Vibrio ( Listonella ) anguillarum is essential for flagellum production and virulence by the water-borne but not intraperitoneal route of inoculation. Microbiology 143:3849–3859
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schuster M., Greenberg E. P. 2006; A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol 296:73–81
    [Google Scholar]
  40. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985
    [Google Scholar]
  41. Tait K., Joint I., Daykin M., Milton D. L., Williams P., Cámara M. 2005; Disruption of quorum-sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240
    [Google Scholar]
  42. Timmen M., Bassler B. L., Jung K. 2006; AI-1 influences the kinase activity but not the phosphatase activity of LuxN of Vibrio harveyi . J Biol Chem 281:24398–24404
    [Google Scholar]
  43. Tu K. C., Bassler B. L. 2007; Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi . Genes Dev 21:221–233
    [Google Scholar]
  44. Urakawa H., Rivera I. N. G. 2006; Aquatic environment. In The Biology of Vibrios pp 175–189 Edited by Thompson F. L., Austin B., Swings J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Waters C. M., Bassler B. L. 2005; Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346
    [Google Scholar]
  46. Yildiz F. H., Liu X. S., Heydorn A., Schoolnik G. K. 2004; Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014167-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014167-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error