1887

Abstract

HtrA is a heat-stress protein that functions both as a chaperone and as a serine protease. HtrA has been shown in several organisms to be involved in responses to stressful environmental conditions and involvement of HtrA in virulence has been reported in pathogenic species. A mutant demonstrated no significant difference to the W83 parent strain when subjected to high temperature and pH values from 3 to 11. However, the mutant showed increased sensitivity to HO. Cell invasion assays indicated that the total interaction (adherence) with KB cells, human coronary artery endothelial cells and gingival epithelial cells (GEC) was the same for both the wild-type and the mutant. However, the mutant showed increased invasion in KB cells and GEC. Microarray experiments indicated that a total of 253 genes were differentially regulated in the mutant, including a group of stress-related genes, which might be responsible for the observed decreased resistance to HO. In animal experiments, a competition assay showed that the mutant did not survive as well as the wild-type. In another assay, fewer mice infected with the mutant died than mice infected with W83, suggesting that the gene is virulence-related. These data indicate that the gene in does not relate to stress conditions such as high temperature and pH, but rather to HO stress. The gene also appears to be important for virulence and survival in animal models.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015131-0
2008-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1161.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015131-0&mimeType=html&fmt=ahah

References

  1. Bélanger M., Rodrigues P., Progulske-Fox A. 2007; Genetic manipulation of Porphyromonas gingivalis. In Current Protocols in Microbiology pp. 13C.12.11–13C.12.24 Edited by Coico T. K. R., Quarles J., Stevenson B., Taylor R. New York, NY: Wiley;
    [Google Scholar]
  2. Belton C. M., Izutsu K. T., Goodwin P. C., Park Y., Lamont R. J. 1999; Fluorescence image analysis of the association between Porphyromonas gingivalis and gingival epithelial cells. Cell Microbiol 1:215–223
    [Google Scholar]
  3. Bickel M., Cimasoni G. 1985; The pH of human crevicular fluid measured by a new microanalytical technique. J Periodontal Res 20:35–40
    [Google Scholar]
  4. Biswas S., Biswas I. 2005; Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 73:6923–6934
    [Google Scholar]
  5. Brondsted L., Andersen M. T., Parker M., Jorgensen K., Ingmer H. 2005; The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71:3205–3212
    [Google Scholar]
  6. Chatfield S. N., Strahan K., Pickard D., Charles I. G., Hormaeche C. E., Dougan G. 1992; Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog 12:145–151
    [Google Scholar]
  7. Cortes G., de Astorza B., Benedi V. J., Alberti S. 2002; Role of the htrA gene in Klebsiella pneumoniae virulence. Infect Immun 70:4772–4776
    [Google Scholar]
  8. Davies K. J., Lin S. W. 1988; Degradation of oxidatively denatured proteins in Escherichia coli. Free Radic Biol Med 5:215–223
    [Google Scholar]
  9. Diaz P. I., Zilm P. S., Wasinger V., Corthals G. L., Rogers A. H. 2004; Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Oral Microbiol Immunol 19:137–143
    [Google Scholar]
  10. Diaz P. I., Slakeski N., Reynolds E. C., Morona R., Rogers A. H., Kolenbrander P. E. 2006; Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 188:2454–2462
    [Google Scholar]
  11. Dorn B. R., Dunn W. A. Jr, Progulske-Fox A. 1999; Invasion of human coronary artery cells by periodontal pathogens. Infect Immun 67:5792–5798
    [Google Scholar]
  12. Dorn B. R., Burks J. N., Seifert K. N., Progulske-Fox A. 2000; Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis. FEMS Microbiol Lett 187:139–144
    [Google Scholar]
  13. Dorn B. R., Dunn W. A. Jr, Progulske-Fox A. 2001; Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 69:5698–5708
    [Google Scholar]
  14. Duncan M. J., Nakao S., Skobe Z., Xie H. 1993; Interactions of Porphyromonas gingivalis with epithelial cells. Infect Immun 61:2260–2265
    [Google Scholar]
  15. Elzer P. H., Phillips R. W., Kovach M. E., Peterson K. M., Roop R. M. II 1994; Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A ( htrA) deletion mutant. Infect Immun 62:4135–4139
    [Google Scholar]
  16. Elzer P. H., Phillips R. W., Robertson G. T., Roop R. M. II 1996; The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect Immun 64:4838–4841
    [Google Scholar]
  17. Farn J., Roberts M. 2004; Effect of inactivation of the HtrA-like serine protease DegQ on the virulence of Salmonella enterica serovar Typhimurium in mice. Infect Immun 72:7357–7359
    [Google Scholar]
  18. Fedi P. F. Jr, Killoy W. J. 1992; Temperature differences at periodontal sites in health and disease. J Periodontol 63:24–27
    [Google Scholar]
  19. Hosogi Y., Duncan M. J. 2005; Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect Immun 73:2327–2335
    [Google Scholar]
  20. Houalet-Jeanne S., Pellen-Mussi P., Tricot-Doleux S., Apiou J., Bonnaure-Mallet M. 2001; Assessment of internalization and viability of Porphyromonas gingivalis in KB epithelial cells by confocal microscopy. Infect Immun 69:7146–7151
    [Google Scholar]
  21. Ibrahim Y. M., Kerr A. R., McCluskey J., Mitchell T. J. 2004; Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect Immun 72:3584–3591
    [Google Scholar]
  22. Johnson K., Charles I., Dougan G., Pickard D., O'Gaora P., Costa G., Ali T., Miller I., Hormaeche C. 1991; The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5:401–407
    [Google Scholar]
  23. Kozarov E. V., Dorn B. R., Shelburne C. E., Dunn W. A. Jr, Progulske-Fox A. 2005; Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol 25:e17–e18
    [Google Scholar]
  24. Kung R. T., Ochs B., Goodson J. M. 1990; Temperature as a periodontal diagnostic. J Clin Periodontol 17:557–563
    [Google Scholar]
  25. Lamont R. J., Chan A., Belton C. M., Izutsu K. T., Vasel D., Weinberg A. 1995; Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63:3878–3885
    [Google Scholar]
  26. Laskowska E., Kuczyânska-Wiâsnik D., Skâorko-Glonek J., Taylor A. 1996; Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol 22:555–571
    [Google Scholar]
  27. Lee S. W., Hillman J. D., Progulske-Fox A. 1996; The hemagglutinin genes hagB and hagC of Porphyromonas gingivalis are transcribed in vivo as shown by use of a new expression vector. Infect Immun 64:4802–4810
    [Google Scholar]
  28. Li S. R., Dorrell N., Everest P. H., Dougan G., Wren B. W. 1996; Construction and characterization of a Yersinia enterocolitica O : 8 high-temperature requirement ( htrA) isogenic mutant. Infect Immun 64:2088–2094
    [Google Scholar]
  29. Lindskog S., Blomlof L., Hakanson H. 1994; Differential periodontal temperature measurements in the assessment of periodontal disease activity: an experimental and clinical study. Scand J Dent Res 102:10–16
    [Google Scholar]
  30. Lipinska B., Fayet O., Baird L., Georgopoulos C. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
    [Google Scholar]
  31. Lipinska B., Zylicz M., Georgopoulos C. 1990; The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172:1791–1797
    [Google Scholar]
  32. Lynch M. C., Kuramitsu H. K. 1999; Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun 67:3367–3375
    [Google Scholar]
  33. Lyon W. R., Caparon M. G. 2004; Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 72:1618–1625
    [Google Scholar]
  34. Masters J. R. 2002; HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2:315–319
    [Google Scholar]
  35. McDermid A. S., McKee A. S., Marsh P. D. 1988; Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56:1096–1100
    [Google Scholar]
  36. McKenzie R., Fletcher H. M. 2007; Studies in oxidative stress resistance of Porphyromonas gingivalis W83. In The IADR/AADR/CADR 85th General Session and Exhibition (March 21–24, 2007) New Orleans, LA: Abstract 2353
    [Google Scholar]
  37. Mettraux G. R., Gusberti F. A., Graf H. 1984; Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol 55:516–521
    [Google Scholar]
  38. Meyerov R. H., Lemmer J., Cleaton-Jones P. E., Volchansky A. 1991; Temperature gradients in periodontal pockets. J Periodontol 62:95–99
    [Google Scholar]
  39. Njoroge T., Genco R. J., Sojar H. T., Hamada N., Genco C. A. 1997; A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 65:1980–1984
    [Google Scholar]
  40. Pallen M. J., Wren B. W. 1997; The HtrA family of serine proteases. Mol Microbiol 26:209–221
    [Google Scholar]
  41. Rigoulay C., Entenza J. M., Halpern D., Widmer E., Moreillon P., Poquet I., Gruss A. 2005; Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Infect Immun 73:563–572
    [Google Scholar]
  42. Robinson J. M. 1985; Improved localization of intracellular sites of phosphatases using cerium and cell permeabilization. J Histochem Cytochem 33:749–754
    [Google Scholar]
  43. Roy F., Vanterpool E., Fletcher H. M. 2006; HtrA in Porphyromonas gingivalis can regulate growth and gingipain activity under stressful environmental conditions. Microbiology 152:3391–3398
    [Google Scholar]
  44. Sandros J., Papapanou P. N., Nannmark U., Dahlâen G. 1994; Porphyromonas gingivalis invades human pocket epithelium in vitro. J Periodontal Res 29:62–69
    [Google Scholar]
  45. Socransky S. S., Haffajee A. D. 1992; The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331
    [Google Scholar]
  46. Spiess C., Beil A., Ehrmann M. 1999; A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347
    [Google Scholar]
  47. Stack H. M., Sleator R. D., Bowers M., Hill C., Gahan C. G. 2005; Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 71:4241–4247
    [Google Scholar]
  48. Strauch K. L., Beckwith J. 1988; An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A 85:1576–1580
    [Google Scholar]
  49. Sztukowska M., Bugno M., Potempa J., Travis J., Kurtz D. M. Jr 2002; Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 44:479–488
    [Google Scholar]
  50. Tacket C. O., Sztein M. B., Wasserman S. S., Losonsky G., Kotloff K. L., Wyant T. L., Nataro J. P., Edelman R., Perry J. other authors 2000; Phase 2 clinical trial of attenuated Salmonella enterica serovar typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect Immun 68:1196–1201
    [Google Scholar]
  51. Tanaka M., Hanioka T., Takaya K., Shizukuishi S. 1998; Association of oxygen tension in human periodontal pockets with gingival inflammation. J Periodontol 69:1127–1130
    [Google Scholar]
  52. Wilson R. L., Brown L. L., Kirkwood-Watts D., Warren T. K., Lund S. A., King D. S., Jones K. F., Hruby D. E. 2006; Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74:765–768
    [Google Scholar]
  53. Wonderling L. D., Wilkinson B. J., Bayles D. O. 2004; The htrA ( degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol 70:1935–1943
    [Google Scholar]
  54. Wu Y., Lee S. W., Hillman J. D., Progulske-Fox A. 2002; Identification and testing of Porphyromonas gingivalis virulence genes with a pPGIVET system. Infect Immun 70:928–937
    [Google Scholar]
  55. Yuan L., Hillman J. D., Progulske-Fox A. 2005; Microarray analysis of quorum-sensing-regulated genes in Porphyromonas gingivalis. Infect Immun 73:4146–4154
    [Google Scholar]
  56. Yuan L., Rodrigues P. H., Bélanger M., Dunn W. Jr, Progulske-Fox A. 2007; The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo. FEMS Immunol Med Microbiol 51:388–398
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015131-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015131-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error