1887

Abstract

Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for cmF-ssociated omologous roteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced . Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016840-0
2008-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1570.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016840-0&mimeType=html&fmt=ahah

References

  1. Akeda Y., Galan J. E. 2005; Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915
    [Google Scholar]
  2. Backert S., Meyer T. F. 2006; Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217
    [Google Scholar]
  3. Baron G. S., Nano F. E. 1998; MglA and MglB are required for the intramacrophage growth of Francisella novicida . Mol Microbiol 29:247–259
    [Google Scholar]
  4. Bingle L. E. H., Bailey C. E., Pallen M. J. 2008; Type VI secretion: a beginner's guide. Curr Opin Microbiol 11:3–8
    [Google Scholar]
  5. Bladergroen M. R., Badelt K., Spaink H. P. 2003; Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:53–64
    [Google Scholar]
  6. Caron E., Crepin V. F., Simpson N., Knutton S., Garmendia J., Frankel G. 2006; Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol 9:40–45
    [Google Scholar]
  7. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485
    [Google Scholar]
  8. Cornelis G. R. 1998; The Yersinia Yop virulon, a bacterial system to subvert cells of the primary host defense. Folia Microbiol (Praha 43:253–261
    [Google Scholar]
  9. Cossart P., Sansonetti P. J. 2004; Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248
    [Google Scholar]
  10. Das S., Chaudhuri K. 2003; Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3:287–300
    [Google Scholar]
  11. Das S., Chakrabortty A., Banerjee R., Roychoudhury S., Chaudhuri K. 2000; Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. FEMS Microbiol Lett 190:87–91
    [Google Scholar]
  12. Das S., Chakrabortty A., Banerjee R., Chaudhuri K. 2002; Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun 295:922–928
    [Google Scholar]
  13. de Bruin O. M., Ludu J. S., Nano F. E. 2007; The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1–10
    [Google Scholar]
  14. De Mot R., Vanderleyden J. 1994; The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12:333–334
    [Google Scholar]
  15. Dudley E. G., Thomson N. R., Parkhill J., Morin N. P., Nataro J. P. 2006; Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli . Mol Microbiol 61:1267–1282
    [Google Scholar]
  16. Edqvist P. J., Aili M., Liu J., Francis M. S. 2007; Minimal YopB and YopD translocator secretion by Yersinia is sufficient for Yop-effector delivery into target cells. Microbes Infect 9:224–233
    [Google Scholar]
  17. Fernandez L. A., Berenguer J. 2000; Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24:21–44
    [Google Scholar]
  18. Filloux A. 2004; The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179
    [Google Scholar]
  19. Folkesson A., Lofdahl S., Normark S. 2002; The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153:537–545
    [Google Scholar]
  20. Garmendia J., Beuzon C. R., Ruiz-Albert J., Holden D. W. 2003; The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 149:2385–2396
    [Google Scholar]
  21. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S. 2004; A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev Cell 7:745–754
    [Google Scholar]
  22. Hansen A. M., Qiu Y., Yeh N., Blattner F. R., Durfee T., Jin D. J. 2005; SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli . Mol Microbiol 56:719–734
    [Google Scholar]
  23. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744
    [Google Scholar]
  24. Kanamaru S., Leiman P. G., Kostyuchenko V. A., Chipman P. R., Mesyanzhinov V. V., Arisaka F., Rossmann M. G. 2002; Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557
    [Google Scholar]
  25. Kulasekara H. D., Miller S. I. 2007; Threonine phosphorylation times bacterial secretion. Nat Cell Biol 9:734–736
    [Google Scholar]
  26. Lauriano C. M., Barker J. R., Yoon S. S., Nano F. E., Arulanandam B. P., Hassett D. J., Klose K. E. 2004; MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101:4246–4249
    [Google Scholar]
  27. Mattinen L., Nissinen R., Riipi T., Kalkkinen N., Pirhonen M. 2007; Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum . Proteomics 7:3527–3537
    [Google Scholar]
  28. Merrell D. S., Falkow S. 2004; Frontal and stealth attack strategies in microbial pathogenesis. Nature 430:250–256
    [Google Scholar]
  29. Moore M. M., Fernandez D. L., Thune R. L. 2002; Cloning and characterization of Edwardsiella ictaluri proteins expressed and recognized by the channel catfish Ictalurus punctatus immune response during infection. Dis Aquat Organ 52:93–107
    [Google Scholar]
  30. Mota L. J., Sorg I., Cornelis G. R. 2005; Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10
    [Google Scholar]
  31. Motley S. T., Lory S. 1999; Functional characterization of a serine/threonine protein kinase of Pseudomonas aeruginosa . Infect Immun 67:5386–5394
    [Google Scholar]
  32. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530
    [Google Scholar]
  33. Mougous J. D., Gifford C. A., Ramsdell T. L., Mekalanos J. J. 2007; Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa . Nat Cell Biol 9:797–803
    [Google Scholar]
  34. Mukhopadhyay S., Kapatral V., Xu W., Chakrabarty A. M. 1999; Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa . J Bacteriol 181:6615–6622
    [Google Scholar]
  35. Nagai H., Kagan J. C., Zhu X., Kahn R. A., Roy C. R. 2002; A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682
    [Google Scholar]
  36. Nano F. E., Schmerk C. 2007; The Francisella pathogenicity island. Ann N Y Acad Sci 1105122–137
    [Google Scholar]
  37. Nano F. E., Zhang N., Cowley S. C., Klose K. E., Cheung K. K., Roberts M. J., Ludu J. S., Letendre G. W., Meierovices A. I. other authors 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436
    [Google Scholar]
  38. Nataro J. P., Yikang D., Yingkang D., Walker K. 1994; AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli . J Bacteriol 176:4691–4699
    [Google Scholar]
  39. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. 1999; AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43
    [Google Scholar]
  40. Pallen M., Chaudhuri R., Khan A. 2002; Bacterial FHA domains: neglected players in the phospho-threonine signalling game?. Trends Microbiol 10:556–563
    [Google Scholar]
  41. Pallen M. J., Chaudhuri R. R., Henderson I. R. 2003; Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527
    [Google Scholar]
  42. Parsons D. A., Heffron F. 2005; sciS , an icmF homolog in Salmonella enterica serovar Typhimurium , limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345
    [Google Scholar]
  43. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C. 2003; In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5:1294–1308
    [Google Scholar]
  44. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J. 2006; Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533
    [Google Scholar]
  45. Pukatzki S., Ma A. T., Revel A. T., Sturtevant D., Mekalanos J. J. 2007; Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513
    [Google Scholar]
  46. Purcell M., Shuman H. A. 1998; The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect Immun 66:2245–2255
    [Google Scholar]
  47. Rao P. S., Yamada Y., Tan Y. P., Leung K. Y. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586
    [Google Scholar]
  48. Rappas M., Schumacher J., Beuron F., Niwa H., Bordes P., Wigneshweraraj S., Keetch C. A., Robinson C. V., Buck M., Zhang X. 2005; Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975
    [Google Scholar]
  49. Roest H. P., Mulders I. H., Spaink H. P., Wijffelman C. A., Lugtenberg B. J. 1997; A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. Mol Plant Microbe Interact 10:938–941
    [Google Scholar]
  50. Rossmann M. G., Mesyanzhinov V. V., Arisaka F., Leiman P. G. 2004; The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180
    [Google Scholar]
  51. Saier M. H. Jr 2006; Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214:75–90
    [Google Scholar]
  52. Santic M., Molmeret M., Barker J. R., Klose K. E., Dekanic A., Doric M., Abu Kwaik Y. 2007; A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol 9:2391–2403
    [Google Scholar]
  53. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J. other authors 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei . Mol Microbiol 64:1466–1485
    [Google Scholar]
  54. Schlieker C., Zentgraf H., Dersch P., Mogk A. 2005; ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386:1115–1127
    [Google Scholar]
  55. Segal G., Feldman M., Zusman T. 2005; The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii . FEMS Microbiol Rev 29:65–81
    [Google Scholar]
  56. Sexton J. A., Vogel J. P. 2002; Type IVB secretion by intracellular pathogens. Traffic 3:178–185
    [Google Scholar]
  57. Sexton J. A., Miller J. L., Yoneda A., Kehl-Fie T. E., Vogel J. P. 2004; Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–5992
    [Google Scholar]
  58. Shao H., James D., Lamont R. J., Demuth D. R. 2007; Differential interaction of Aggregatibacter ( Actinobacillus ) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J Bacteriol 189:5559–5565
    [Google Scholar]
  59. Sheahan K. L., Cordero C. L., Satchell K. J. 2004; Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci U S A 101:9798–9803
    [Google Scholar]
  60. Sheikh J., Czeczulin J. R., Harrington S., Hicks S., Henderson I. R., Le Bouguenec C., Gounon P., Phillips A., Nataro J. P. 2002; A novel dispersin protein in enteroaggregative Escherichia coli . J Clin Invest 110:1329–1337
    [Google Scholar]
  61. Van Brussel A. A., Zaat S. A., Cremers H. C., Wijffelman C. A., Pees E., Tak T., Lugtenberg B. J. 1986; Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch. J Bacteriol 165:517–522
    [Google Scholar]
  62. VanRheenen S. M., Dumenil G., Isberg R. R. 2004; IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun 72:5972–5982
    [Google Scholar]
  63. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A. 2006; Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103:171–176
    [Google Scholar]
  64. Wang J., Li C., Yang H., Mushegian A., Jin S. 1998a; A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice. J Bacteriol 180:6764–6768
    [Google Scholar]
  65. Wang Y. D., Zhao S., Hill C. W. 1998b; Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli . J Bacteriol 180:4102–4110
    [Google Scholar]
  66. Weibezahn J., Tessarz P., Schlieker C., Zahn R., Maglica Z., Lee S., Zentgraf H., Weber-Ban E. U., Dougan D. A. other authors 2004; Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653–665
    [Google Scholar]
  67. Wilkins B. M., Thomas A. T. 2000; DNA-independent transport of plasmid primase protein between bacteria by the I1 conjugation system. Mol Microbiol 38:650–657
    [Google Scholar]
  68. Williams S. G., Varcoe L. T., Attridge S. R., Manning P. A. 1996; Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun 64:283–289
    [Google Scholar]
  69. Yahr T. L. 2006; A critical new pathway for toxin secretion?. N Engl J Med 355:1171–1172
    [Google Scholar]
  70. Yamaguchi K., Yu F., Inouye M. 1988; A single amino acid determinant of the membrane localization of lipoproteins in Escherichia coli . Cell 53:423–432
    [Google Scholar]
  71. Yeo H. J., Waksman G. 2004; Unveiling molecular scaffolds of the type IV secretion system. J Bacteriol 186:1919–1926
    [Google Scholar]
  72. Zheng J., Leung K. Y. 2007; Dissection of a type VI secretion system in Edwardsiella tarda . Mol Microbiol 66:1192–1206
    [Google Scholar]
  73. Zheng J., Tung S. L., Leung K. Y. 2005; Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun 73:4127–4137
    [Google Scholar]
  74. Zusman T., Feldman M., Halperin E., Segal G. 2004; Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect Immun 72:3398–3409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016840-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016840-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error