1887

Abstract

Attention has recently been drawn to because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of (Scm)] revealed that recombinant Scm (A- and B-domains) and Scm (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm and of Acm indicated that these proteins were rich in -sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC), detected a ‘ladder’ pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from , suggesting that EbpC is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that (), () and are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017319-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3199.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017319-0&mimeType=html&fmt=ahah

References

  1. Arduino R. C., Murray B. E., Rakita R. M. 1994; Roles of antibodies and complement in phagocytic killing of enterococci. Infect Immun 62:987–993
    [Google Scholar]
  2. Barocchi M. A., Ries J., Zogaj X., Hemsley C., Albiger B., Kanth A., Dahlberg S., Fernebro J., Moschioni M. other authors 2006; A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A 103:2857–2862
    [Google Scholar]
  3. Bowden M. G., Chen W., Singvall J., Xu Y., Peacock S. J., Valtulina V., Speziale P., Höök M. 2005; Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis . Microbiology 151:1453–1464
    [Google Scholar]
  4. Coque T. M., Patterson J. E., Steckelberg J. M., Murray B. E. 1995; Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229
    [Google Scholar]
  5. Deivanayagam C. C., Wann E. R., Chen W., Carson M., Rajashankar K. R., Höök M., Narayana S. V. 2002; A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21:6660–6672
    [Google Scholar]
  6. Dramsi S., Trieu-Cuot P., Bierne H. 2005; Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 156:289–297
    [Google Scholar]
  7. Dramsi S., Caliot E., Bonne I., Guadagnini S., Prevost M. C., Kojadinovic M., Lalioui L., Poyart C., Trieu-Cuot P. 2006; Assembly and role of pili in group B streptococci. Mol Microbiol 60:1401–1413
    [Google Scholar]
  8. Hendrickx A. P., van Wamel, W. J., Posthuma G., Bonten M. J., Willems R. J. 2007; Five genes encoding surface-exposed LPXTG proteins are enriched in hospital-adapted Enterococcus faecium clonal complex 17 isolates. J Bacteriol 189:8321–8332
    [Google Scholar]
  9. Kang H. J., Coulibaly F., Clow F., Proft T., Baker E. N. 2007; Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science 318:1625–1628
    [Google Scholar]
  10. Kemp K. D., Singh K. V., Nallapareddy S. R., Murray B. E. 2007; Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes,srtA and bps ( srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun 75:5399–5404
    [Google Scholar]
  11. Krishnan V., Gaspar A. H., Ye N., Mandlik A., Ton-That H., Narayana S. V. 2007; An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure 15:893–903
    [Google Scholar]
  12. Leavis H. L., Willems R. J., Top J., Spalburg E., Mascini E. M., Fluit A. C., Hoepelman A., de Neeling A. J., Bonten M. J. 2003; Epidemic and nonepidemic multidrug-resistant Enterococcus faecium . Emerg Infect Dis 9:1108–1115
    [Google Scholar]
  13. Liang R., Woo S. L., Takakura Y., Moon D. K., Jia F., Abramowitch S. D. 2006; Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res 24:811–819
    [Google Scholar]
  14. Liu Q., Ponnuraj K., Xu Y., Ganesh V. K., Sillanpää J., Murray B. E., Narayana S. V., Höök M. 2007; The Enterococcus faecalis MSCRAMM ACE binds its ligand by the collagen hug model. J Biol Chem 282:19629–19637
    [Google Scholar]
  15. Lobley A., Whitmore L., Wallace B. A. 2002; dichroweb: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212
    [Google Scholar]
  16. Mandlik A., Swierczynski A., Das A., Ton-That H. 2007; Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64:111–124
    [Google Scholar]
  17. Marraffini L. A., Dedent A. C., Schneewind O. 2006; Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221
    [Google Scholar]
  18. Mora M., Bensi G., Capo S., Falugi F., Zingaretti C., Manetti A. G., Maggi T., Taddei A. R., Grandi G., Telford J. L. 2005; Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 102:15641–15646
    [Google Scholar]
  19. Murray B. E. 2000; Vancomycin-resistant enterococcal infections. N Engl J Med 342:710–721
    [Google Scholar]
  20. Murray B. E., Singh K. V., Ross R. P., Heath J. D., Dunny G. M., Weinstock G. M. 1993; Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175:5216–5223
    [Google Scholar]
  21. Nallapareddy S. R., Qin X., Weinstock G. M., Höök M., Murray B. E. 2000; Enterococcus faecalis adhesin, Ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224
    [Google Scholar]
  22. Nallapareddy S. R., Weinstock G. M., Murray B. E. 2003; Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol Microbiol 47:1733–1747
    [Google Scholar]
  23. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E. 2006; Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest 116:2799–2807
    [Google Scholar]
  24. Nallapareddy S. R., Sillanpää J., Ganesh V. K., Höök M., Murray B. E. 2007; Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm. Infect Immun 75:3192–3196
    [Google Scholar]
  25. Nallapareddy S. R., Singh K. V., Murray B. E. 2008a; Contribution of the collagen adhesin, Acm, to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect Immun 76:4120–4128
    [Google Scholar]
  26. Nallapareddy S. R., Singh K. V., Okhuysen P. C., Murray B. E. 2008b; A functional collagen adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates with the recent success of this emerging nosocomial pathogen. Infect Immun 76:4110–4119
    [Google Scholar]
  27. Nicholls A. C., Oliver J. E., McCarron S., Harrison J. B., Greenspan D. S., Pope F. M. 1996; An exon skipping mutation of a type V collagen gene (COL5A1) in Ehlers-Danlos syndrome. J Med Genet 33:940–946
    [Google Scholar]
  28. Patti J. M., Allen B. L., McGavin M. J., Höök M. 1994; MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617
    [Google Scholar]
  29. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Höök M. 2001; Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus . J Biol Chem 276:44721–44728
    [Google Scholar]
  30. Pizarro-Cerda J., Cossart P. 2006; Bacterial adhesion and entry into host cells. Cell 124:715–727
    [Google Scholar]
  31. Ponnuraj K., Bowden M. G., Davis S., Gurusiddappa S., Moore D., Choe D., Xu Y., Hook M., Narayana S. V. 2003; A ‘dock, lock, and latch’ structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228
    [Google Scholar]
  32. Rakita R. M., Quan V. C., Jacques-Palaz K., Singh K. V., Arduino R. C., Mee M., Murray B. E. 2000; Specific antibody promotes opsonization and PMN-mediated killing of phagocytosis-resistant Enterococcus faecium . FEMS Immunol Med Microbiol 28:291–299
    [Google Scholar]
  33. Rice L. B. 2001; Emergence of vancomycin-resistant enterococci. Emerg Infect Dis 7:183–187
    [Google Scholar]
  34. Rice L. B., Carias L., Rudin S., Vael C., Goossens H., Konstabel C., Klare I., Nallapareddy S. R., Huang W., Murray B. E. 2003; A potential virulence gene, hylEfm , predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512
    [Google Scholar]
  35. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Höök M. 1999; Ace is a collagen-binding MSCRAMM from Enterococcus faecalis . J Biol Chem 274:26939–26945
    [Google Scholar]
  36. Roche F. M., Massey R., Peacock S. J., Day N. P., Visai L., Speziale P., Lam A., Pallen M., Foster T. J. 2003; Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149:643–654
    [Google Scholar]
  37. Scott J. R., Zahner D. 2006; Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol 62:320–330
    [Google Scholar]
  38. Sillanpää J., Xu Y., Nallapareddy S. R., Murray B. E., Höök M. 2004; A family of putative MSCRAMMs from Enterococcus faecalis . Microbiology 150:2069–2078
    [Google Scholar]
  39. Singh K. V., Coque T. M., Weinstock G. M., Murray B. E. 1998; In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21:323–331
    [Google Scholar]
  40. Singh K. V., Nallapareddy S. R., Murray B. E. 2007; Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195:1671–1677
    [Google Scholar]
  41. Telford J. L., Barocchi M. A., Margarit I., Rappuoli R., Grandi G. 2006; Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519
    [Google Scholar]
  42. Teng F., Kawalec M., Weinstock G. M., Hryniewicz W., Murray B. E. 2003; An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 71:5033–5041
    [Google Scholar]
  43. Ton-That H., Schneewind O. 2003; Assembly of pili on the surface of Corynebacterium diphtheriae . Mol Microbiol 50:1429–1438
    [Google Scholar]
  44. Ton-That H., Marraffini L. A., Schneewind O. 2004; Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae . Mol Microbiol 53:251–261
    [Google Scholar]
  45. Wenstrup R. J., Florer J. B., Brunskill E. W., Bell S. M., Chervoneva I., Birk D. E. 2004; Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337
    [Google Scholar]
  46. Whitmore L., Wallace B. A. 2004; dichroweb, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673
    [Google Scholar]
  47. Willems R. J., Homan W., Top J., van Santen-Verheuvel M., Tribe D., Manzioros X., Gaillard C., Vandenbroucke-Grauls C. M., Mascini E. M. other authors 2001; Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357:853–855
    [Google Scholar]
  48. Wilson K. 1994; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 2.4.1–2.4.2 Edited by Ausubel F. M., Brent R., Kingston R. E., David D. M., Scidman J. G., Smith J. A., Struhl K. Brooklyn, NY: Green Publishing Associates;
    [Google Scholar]
  49. Xu Y., Liang X., Chen Y., Koehler T. M., Höök M. 2004; Identification and biochemical characterization of two novel collagen binding MSCRAMMs of Bacillus anthracis . J Biol Chem 279:51760–51768
    [Google Scholar]
  50. Zong Y., Xu Y., Liang X., Keene D. R., Höök A., Gurusiddappa S., Höök M., Narayana S. V. 2005; A ‘collagen hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017319-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017319-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error