1887

Abstract

In order to identify novel genes affecting cell wall integrity, we have generated mutant strains of the filamentous fungus that show hypersensitivity to the chitin-binding agent Calcofluor White (CFW). Affected loci are designated loci. The phenotype of one of these alleles, , also includes shortened hyphal compartments and increased density of branching in the absence of CFW, as well as reduced staining of cell walls by the lectin FITC–Concanavalin A (ConA), which has strong binding affinity for mannosyl residues. We have identified two genes (AN8848.3 and AN9298.3, designated and , respectively) that complement all aspects of the phenotype. Both genes show strong sequence similarity to GDP-mannose transporters (GMTs) of and other yeasts. Sequencing of from the mutant strain reveals a G to C mutation at position 943, resulting in a predicted alanine to proline substitution at amino acid position 315 within a region that is highly conserved among other fungi. No mutations were observed in the mutant strain's allele of . Meiotic mapping demonstrated a recombination frequency of under 1 % between the locus and the locus (located ∼9.5 kb from AN8848.3), confirming that and are identical. A GmtA–GFP chimera exhibits a punctate distribution pattern, consistent with that shown by putative Golgi markers in . However, this distribution did not overlap with that of the putative Golgi equivalent marker CopA–monomeric red fluorescent protein (mRFP), which may indicate that the physically separated Golgi-equivalent organelles of represent physiologically distinct counterparts of the stacked cisternae of plants and animals. These findings demonstrate that and play roles in cell wall metabolism in similar to those previously reported for GMTs in yeasts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017483-0
2008-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2037.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017483-0&mimeType=html&fmt=ahah

References

  1. Abe M., Noda Y., Adachi H., Yoda K. 2004; Localization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci 117:5687–5696
    [Google Scholar]
  2. Arakawa K., Abe M., Noda Y., Adachi H., Yoda K. 2006; Molecular cloning and characterization of a Pichia pastoris ortholog of the yeast Golgi GDP-mannose transporter gene. J Gen Appl Microbiol 52:137–145
    [Google Scholar]
  3. Baenziger J. U., Fiete D. 1979; Structural determinants of Concanavalin A specificity for oligosaccharides. J Biol Chem 254:2400–2407
    [Google Scholar]
  4. Bates S., Hughes H. B., Munro C. A., Thomas W. P. H., MacCallum D. M., Bertram G., Atrih A., Ferguson M. A. J., Brown A. J. P. other authors 2006; Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 281:90–98
    [Google Scholar]
  5. Berninsone P. M., Hirschberg C. B. 2000; Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 10:542–547
    [Google Scholar]
  6. Bourett T. M., James S. W., Howard R. J. 2007; The endomembrane system of the fungal cell. In The Mycota VIII. Biology of the Fungal Cell1–47 Edited by Howard R. J., Gow N. A. R. Berlin: Springer Verlag;
    [Google Scholar]
  7. Bowman S. M., Free S. J. 2006; The structure and synthesis of the fungal cell wall. Bioessays 28:799–808
    [Google Scholar]
  8. Breakspear A., Langford K. J., Momany M., Assinder S. J. 2007; CopA : GFP localizes to putative Golgi equivalents in Aspergillus nidulans. FEMS Microbiol Lett 277:90–97
    [Google Scholar]
  9. Cheng J., Park T. S., Fischl A. S., Ye X. S. 2001; Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol Cell Biol 21:6198–6209
    [Google Scholar]
  10. Clutterbuck A. J., Arst H. 1995; Genetic nomenclature guide: Aspergillus nidulans. Trends Genet 11:13–14
    [Google Scholar]
  11. Cosson P., Letourneur F. 1997; Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. Curr Opin Cell Biol 9:484–487
    [Google Scholar]
  12. Cottrell T. R., Griffith C. L., Liu H., Nenninger A. A., Doering T. L. 2007; The pathogenic fungus Cryptococcus neoformans expresses two functional GDP–mannose transporters with distinct expression patterns and roles in capsule synthesis. Eukaryot Cell 6:776–785
    [Google Scholar]
  13. Cullen P. J., Xu-Friedman R., Delrow J., Sprague G. F. 2006; Genome-wide analysis of the response to protein glycosylation deficiency in yeast. FEMS Yeast Res 6:1264–1273
    [Google Scholar]
  14. de Groot P. W. J., Ruiz C., Vázquez de Aldana C. R., Dueňas E., Cid V. J., Del Rey F., Rodríquez-Peña J. M., Pérez P., Andel A. other authors 2001; A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2:124–142
    [Google Scholar]
  15. De Groot P. W., Ram A. F., Klis F. M. 2005; Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675
    [Google Scholar]
  16. De Nobel J. G., Klis F. M., Munnik T., Priem J., van den Ende H. 1990; An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 6:483–490
    [Google Scholar]
  17. Dean N. 1999; Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322
    [Google Scholar]
  18. Dean N., Zhang Y. B., Poster J. B. 1997; The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J Biol Chem 272:31908–31914
    [Google Scholar]
  19. Galagan J. E., Calvo S. E., Cuomo C., Ma L. J., Wortman J. R., Batzoglou S., Lee S. I., Bastürkmen M., Spevak C. C. other authors 2005; Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115
    [Google Scholar]
  20. Gao X.-D., Dean N. 2000; Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 275:17718–17727
    [Google Scholar]
  21. Gao X.-D., Nishikawa A., Dean N. 2001; Identification of a conserved motif in the yeast Golgi GDP–mannose transporter required for binding to nucleotide sugar. J Biol Chem 276:4424–4432
    [Google Scholar]
  22. Gemmill T. R., Trimble R. B. 1999; Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426227–237
    [Google Scholar]
  23. Goto M. 2007; Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 71:1415–1427
    [Google Scholar]
  24. Griffiths G., Pepperkok R., Locker J. K., Kreis T. E. 1995; Immunocytochemical localization of β-COP to the ER-Golgi boundary and the TGN. J Cell Sci 108:2839–2856
    [Google Scholar]
  25. Harris S. D., Morrell J. L., Hamer J. E. 1994; Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136:517–532
    [Google Scholar]
  26. Harris S. D., Read N. D., Roberson R. W., Shaw B., Seiler S., Plamann M., Momany M. 2005; Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229
    [Google Scholar]
  27. Hill T. W., Kafer E. 2001; Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genet Newsl 48:20–21
    [Google Scholar]
  28. Hill T. W., Loprete D. M., Momany M., Ha Y., Harsch L. M., Livesay J. A., Mirchandani A., Murdock J. J., Vaughan M. J., Watt M. B. 2006; Isolation of cell wall mutants in Aspergillus nidulans by screening for hypersensitivity to Calcofluor White. Mycologia 98:399–409
    [Google Scholar]
  29. Howard R. J. 1981; Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48:89–103
    [Google Scholar]
  30. Hubbard M. A., Kaminskyj S. G. W. 2008; Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154:1544–1553
    [Google Scholar]
  31. Ichinomiya M., Motoyama T., Fujiwara M., Takagi M., Horiuchi H., Ohta A. 2002; Repression of chsB expression reveals the functional importance of class IV chitin synthase gene chsD in hyphal growth and conidiation of Aspergillus nidulans. Microbiology 148:1335–1347
    [Google Scholar]
  32. Kafer E. 1977; Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131
    [Google Scholar]
  33. Kaminskyj S. G. 2000; Septum position is marked at the tip of Aspergillus nidulans hyphae. Fungal Genet Biol 31:105–113
    [Google Scholar]
  34. Lesage G., Bussey H. 2006; Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343
    [Google Scholar]
  35. Losev E., Reinke C. A., Jellen J., Strongin D. E., Bevis B. J., Glick B. S. 2006; Golgi maturation visualized in living yeast. Nature 441:1002–1006
    [Google Scholar]
  36. Maertens J. A., Boogaerts M. A. 2000; Fungal cell wall inhibitors: emphasis on clinical aspects. Curr Pharm Des 6:225–239
    [Google Scholar]
  37. Mansour M. K., Levitz S. M. 2003; Fungal mannoproteins: the sweet path to immunodominance. ASM News 69:595–600
    [Google Scholar]
  38. Matsuura-Tokita K., Takeuchi M., Ichihara A., Mikuriya K., Nakano A. 2006; Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010
    [Google Scholar]
  39. McCluskey K. 2003; The Fungal Genetics Stock Center: from Molds to Molecules. In Advances in Applied Microbiology vol. 52 pp 246–262 Edited by Bennett A. Laskin J., Gadd G. New York: Elsevier;
    [Google Scholar]
  40. Mellado E., Dubreucq G., Mol P., Sarfati J., Paris S., Diaquin M., Holden D. W., Rodriguez-Tudela J. L., Latgé J. P. 2003; Cell wall biogenesis in a double chitin synthase mutant ( chsG/ chsE) of Aspergillus fumigatus. Fungal Genet Biol 38:98–109
    [Google Scholar]
  41. Mogelsvang S., Gomez-Ospina N., Soderholm J., Glick B. S., Staehelin L. A. 2003; Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14:2277–2291
    [Google Scholar]
  42. Momany M., Westfall P. J., Abramowsky G. 1999; Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151:557–567
    [Google Scholar]
  43. Mondésert G., Clarke D. J., Reed S. I. 1997; Identification of genes controlling growth polarity in the budding yeast Saccharomyces cerevisiae: a possible role of N-glycosylation and involvement of the exocyst complex. Genetics 147:421–494
    [Google Scholar]
  44. Morin-Ganet M. N., Rambourg A., Deitz S. B., Franzusoff A., Képès F. 2000; Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic 1:56–68
    [Google Scholar]
  45. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R. 2006; A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566
    [Google Scholar]
  46. Nishikawa A., Poster J. B., Jigami Y., Dean N. 2002; Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol 184:29–42
    [Google Scholar]
  47. Oka T., Hamaguchi T., Sameshima Y., Goto M., Furukawa K. 2004; Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology 150:1973–1982
    [Google Scholar]
  48. Osherov N., Mathew J., May G. S. 2000; Polarity-defective mutants of Aspergillus nidulans. Fungal Genet Biol 31:181–188
    [Google Scholar]
  49. Osmani A. H., Oakley B. R., Osmani S. A. 2006; Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique. Nat Protoc 1:2517–2526
    [Google Scholar]
  50. Philip B., Levin D. E. 2001; Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280
    [Google Scholar]
  51. Protchenko O., Ferea T., Rashford J., Tiedeman J., Brown P. O., Botstein D., Philpott C. C. 2001; Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250
    [Google Scholar]
  52. Richard M. L., Plaine A. 2007; Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133
    [Google Scholar]
  53. Roth J., Taatjes D. J., Lucocq J. M., Weinstein J., Paulson J. C. 1985; Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43:287–295
    [Google Scholar]
  54. Shaw B. D., Momany M. 2002; Aspergillus nidulans polarity mutant swoA is complemented by protein O-mannosyltransferase pmtA. Fungal Genet Biol 37:263–270
    [Google Scholar]
  55. Shaw B. D., Momany C., Momany M. 2002; Aspergillus nidulans swoF encodes an N-myristoyl transferase. Eukaryot Cell 1:241–248
    [Google Scholar]
  56. Shi X., Sha Y., Kaminskyj S. 2004; Aspergillus nidulans hypA regulates morphogenesis through the secretion pathway. Fungal Genet Biol 41:75–88
    [Google Scholar]
  57. Shorter J., Warren G. 2002; Golgi architecture and inheritance. Annu Rev Cell Dev Biol 18:379–420
    [Google Scholar]
  58. Smith D. J., Payton M. A. 1994; Hyphal tip extension in Aspergillus nidulans requires the manA gene, which encodes phosphomannose isomerase. Mol Cell Biol 14:6030–6038
    [Google Scholar]
  59. Szewczyk E., Nayak T., Oakley C. E., Edgerton H., Xiong Y., Taheri-Talesh N., Osmani S. A., Oakley B. R. 2006; Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120
    [Google Scholar]
  60. Timpel C., Strahl-Bolsinger S., Ziegelbauer K., Ernst J. F. 1998; Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J Biol Chem 273:20837–20846
    [Google Scholar]
  61. Turner G., Harris S. D. 1999; Genetic control of polarized growth and branching in filamentous fungi. In The Fungal Colony (British Mycological Society Symposia no. 21)229–260 Edited by Gow N. A. R., Robson G. D., Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  62. Turner M. S., Drew R. H., Perfect J. R. 2006; Emerging echinocandins for treatment of invasive fungal infections. Expert Opin Emerg Drugs 11:231–250
    [Google Scholar]
  63. Upadhyay S., Shaw B. D. 2006; A phosphoglucose isomerase mutant in Aspergillus nidulans is defective in hyphal polarity and conidiation. Fungal Genet Biol 43:739–751
    [Google Scholar]
  64. van der Vaart J. M., Caro L. H., Chapman J. W., Klis F. M., Verrips C. T. 1995; Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110
    [Google Scholar]
  65. Verstrepen K. J., Reynolds T. B., Fink G. R. 2004; Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540
    [Google Scholar]
  66. Whittaker S. L., Lunness P., Milward K. J., Doonan J. H., Assinder S. J. 1999; sodVIC is an α-COP-related gene which is essential for establishing and maintaining polarized growth in Aspergillus nidulans. Fungal Genet Biol 26:236–252
    [Google Scholar]
  67. Willer T., Brandl M., Sipiczki M., Strahl S. 2005; Protein O-mannosylation is crucial for cell wall integrity, septation and viability in fission yeast. Mol Microbiol 57:156–170
    [Google Scholar]
  68. Yang L., Ukil L., Osmani A., Nahm F., Davies J., De Souza C. P., Dou X., Perez-Balaguer A., Osmani S. A. 2004; Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3:1359–1362
    [Google Scholar]
  69. Yang Y., Amira M., El-Ganiny A. M., Bray G. E., Sanders D. A. R., Kaminskyj S. G. W. 2008; Aspergillus nidulans hypB encodes a Sec7-domain protein important for hyphal morphogenesis. Fungal Genet Biol 45:749–759
    [Google Scholar]
  70. Yelton M. M., Hamer J. E., Timberlake W. E. 1984; Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81:1470–1474
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017483-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017483-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error