1887

Abstract

LysR-type transcriptional regulators (LTTRs) are one of the key players that help bacteria adapt to different environments. We have designated STM0952, a putative LTTR in serovar Typhimurium ( Typhimurium), as hydrogen peroxide resistance gene (). A knockout mutant of Typhimurium was sensitive to oxidative products of the respiratory burst, specifically to HO. The mutant is profoundly attenuated in a murine model of infection and showed decreased intracellular proliferation in macrophages. It also induced increased amounts of reactive oxygen species and co-localization with gp91phox in the macrophage cell line, when compared to the wild-type. A strain overexpressing the gene showed a survival advantage over the wild-type under HO-induced stress. Microarray analysis suggested the presence of an Hrg regulon, which is required for resistance to the toxic oxidative products of the reticuloendothelial system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017574-0
2008-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2837.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017574-0&mimeType=html&fmt=ahah

References

  1. Beuzon C. R., Holden D. W. 2001; Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3:1345–1352
    [Google Scholar]
  2. Buchmeier N., Bossie S., Chen C. Y., Fang F. C., Guiney D. G., Libby S. J. 1997; SlyA, a transcriptional regulator of Salmonella typhimurium , is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect Immun 65:3725–3730
    [Google Scholar]
  3. Cadenas E. 1989; Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110
    [Google Scholar]
  4. Chakravortty D., Hansen-Wester I., Hensel M. 2002; Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166
    [Google Scholar]
  5. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. 1985; Positive control of a regulon for defenses against oxidative stress and some heat shock proteins in Salmonella typhimurium . Cell 41:753–762
    [Google Scholar]
  6. Christman M. F., Storz G., Ames B. N. 1989; OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium , is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A 86:3484–3488
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  8. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vasquez-Torres A., Xu Y., Fang F. C. 1997; Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997–14001
    [Google Scholar]
  9. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. D. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol 47:103–118
    [Google Scholar]
  10. Farr S. B., Kogoma T. 1991; Oxidative stress response in Escherichia coli and Salmonella typhimurium . Microbiol Rev 55:561–585
    [Google Scholar]
  11. Foster N., Hulme S. D., Barrow P. A. 2003; Induction of antimicrobial pathways during early-phase immune response to Salmonella spp. in murine macrophages: gamma interferon (IFN- γ ) and upregulation of IFN- γ receptor alpha expression are required for NADPH phagocytic oxidase gp91-stimulated oxidative burst and control of virulent Salmonella spp. Infect Immun 71:4733–4741
    [Google Scholar]
  12. Garcia Vescovi E., Soncini F. C., Groisman E. A. 1994; The role of the PhoP/PhoQ regulon in Salmonella virulence. Res Microbiol 145:473–480
    [Google Scholar]
  13. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403
    [Google Scholar]
  14. Kredich N. M. 1971; Regulation of l-cysteine biosynthesis in Salmonella typhimurium . I. effects of growth on varying sulfur sources and O -acetyl-l-serine on gene expression. J Biol Chem 246:3474–3484
    [Google Scholar]
  15. Le Cabec V., Maridonneau-Parini I. 1995; Complete and reversible inhibition of NADPH oxidase in human neutrophils by phenylarsine oxide at a step distal to membrane translocation of the enzyme subunits. J Biol Chem 270:2067–2073
    [Google Scholar]
  16. Leusen J. H., deBoer W. M., Bolscher B. G. J. M., Hilaries P. M., Weening R. S., Ochs H. J., Roos D., Verhoeven A. J. 1994; A point mutation in gp91phox of cytochrome b 558 of human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Clin Invest 93:2120–2126
    [Google Scholar]
  17. Libby S. J., Adams L. G., Ficht T. A., Allen C., Whitford H. A., Buchmeier N. A., Bossie S., Guiney D. G. 1997; The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun 65:1786–1792
    [Google Scholar]
  18. Libby S. J., Lesnick M., Hasegawa P., Weidenhammer E., Guiney D. G. 2000; The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol 2:49–58
    [Google Scholar]
  19. Libby S. J., Lesnick M., Hasegawa P., Kurth M., Belcher C., Fierer J., Guiney D. G. 2002; Characterization of the spv locus in Salmonella enterica serovar Arizona. Infect Immun 70:3290–3294
    [Google Scholar]
  20. Mastroeni P., Vazquez-Torres A., Fang F. C., Xu Y., Khan S., Hormaeche C. E., Dougan G. 2000; Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248
    [Google Scholar]
  21. Miller R. A., Britigan B. E. 1997; Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18
    [Google Scholar]
  22. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two-component regulatory system ( phoP phoQ ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058
    [Google Scholar]
  23. Mouy R., Fischer A., Vilmer E., Seger R., Griscelli C. 1989; Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr 114:555–560
    [Google Scholar]
  24. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. 2000; Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB , ahpB , and ahpC-ahp . J Bacteriol 182:4533–4544
    [Google Scholar]
  25. Pagán-Ramos E., Song J., McFalone M., Mudd M. H., Deretic V. 1998; Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum . J Bacteriol 180:4856–4864
    [Google Scholar]
  26. Papp-Szabò E., Firtel M., Josephy P. D. 1994; Comparison of the sensitivities of Salmonella typhimurium oxyR and katG mutants to killing by human neutrophils. Infect Immun 62:2662–2668
    [Google Scholar]
  27. Robbe-Saule V., Coynault C., Ibanez-Ruiz M., Hermant D., Norel F. 2001; Identification of a non-haem catalase in Salmonella and its regulation by RpoS ( σ S . Mol Microbiol 39:1533–1545
    [Google Scholar]
  28. Rosenberger C. M., Finlay B. B. 2002; Macrophages inhibit Salmonella Typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277:18753–18762
    [Google Scholar]
  29. Russell D. A., Byrne G. A., O'Connell E. P., Boland C. A., Meijer W. G. 2004; The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol 186:5576–5584
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626
    [Google Scholar]
  32. Sly L. M., Guiney D. G., Reiner N. E. 2002; Salmonella enterica serovar Typhimurium periplasmic superoxide dismutases SodCI and SodCII are required for protection against the phagocyte oxidative burst. Infect Immun 70:5312–5315
    [Google Scholar]
  33. Sun Y. H., den Hartigh A. B., de Lima Santos R., Adams L. G., Tsolis R. M. 2002; virB- mediated survival of Brucella abortus in mice and macrophages is independent of a functional inducible nitric oxide synthase or NADPH oxidase in macrophages. Infect Immun 70:4826–4832
    [Google Scholar]
  34. Taylor P. D., Inchley C. J., Gallagher M. P. 1998; The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect Immun 66:3208–3217
    [Google Scholar]
  35. Tseng H. J., McEwan A. G., Apicella M. A., Jennings M. P. 2003; OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae . Infect Immun 71:550–556
    [Google Scholar]
  36. Vazquez-Torres A., Xu Y., Jones-Carson J., Holden D. W., Lucia S. M., Dinauer M. C., Mastroeni P., Fang F. C. 2000; Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658
    [Google Scholar]
  37. Von Knethen A. A., Brüne B. 2001; Delayed activation of PPAR γ by LPS and IFN γ attenuates the oxidative burst in macrophages. FASEB J 15:535–544
    [Google Scholar]
  38. Wautier M. P., Chappey O., Corda S., Stern D. M., Schmidt A. M., Wautie J. L. 2001; Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694
    [Google Scholar]
  39. Wilson C. B., Tsai V., Remington J. S. 1980; Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med 151:328–346
    [Google Scholar]
  40. Wojtaszek P. 1997; Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692
    [Google Scholar]
  41. Wu J., Weiss B. 1991; Two divergently transcribed genes, soxR and soxS , control a superoxide response regulon of Escherichia coli . J Bacteriol 173:2864–2871
    [Google Scholar]
  42. Xiao L., Pimentel D. R., Wang J., Singh K., Colucci W. S., Sawyer D. B. 2002; Role of reactive oxygen species and NAD(P)H oxidase in α 1-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282:C926–C934
    [Google Scholar]
  43. Ygberg S. E., Clements M. O., Rytkonen A., Thompson A., Holden D. W., Hinton J. C., Rhen M. 2006; Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica . Infect Immun 74:1243–1254
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017574-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017574-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error