1887

Abstract

The -ornithine -oxygenase PvdA catalyses the -hydroxylation of -ornithine in many spp., and thus provides an essential enzymic function in the biogenesis of the pyoverdine siderophore. Here, we report a detailed analysis of the membrane topology of the PvdA enzyme from the bacterial pathogen . Membrane topogenic determinants of PvdA were identified by computational analysis, and verified in by constructing a series of translational fusions between PvdA and the PhoA (alkaline phosphatase) reporter enzyme. The inferred topological model resembled a eukaryotic reverse signal-anchor (type III) protein, with a single N-terminal domain anchored to the inner membrane, and the bulk of the protein spanning the cytosol. According to this model, the predicted transmembrane region should overlap the putative FAD-binding site. Cell fractionation and proteinase K accessibility experiments in confirmed the membrane-bound nature of PvdA, but excluded the transmembrane topology of its N-terminal hydrophobic region. Mutational analysis of PvdA, and complementation assays in a Δ mutant, demonstrated the dual (structural and functional) role of the PvdA N-terminal domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018804-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2804.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018804-0&mimeType=html&fmt=ahah

References

  1. Akers H. A., Neilands J. B. 1973; A hydroxamic acid present in Rhodotorula pilimanae cultures grown at low pH and its metabolic relation to rhodotorulic acid. Biochemistry 12:1006–1010
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
    [Google Scholar]
  3. Arts J., van Boxtel R., Filloux A., Tommassen J., Koster M. 2007; Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle–Sec pathway. J Bacteriol 189:2069–2076
    [Google Scholar]
  4. Bleves S., Lazdunski A., Filloux A. 1996; Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas aeruginosa . J Bacteriol 178:4297–4300
    [Google Scholar]
  5. Deber C. M., Liu L. P., Wang C. 1999; Perspective: peptides as mimics of transmembrane segments in proteins. J Pept Res 54:200–205
    [Google Scholar]
  6. Dick S., Marrone L., Thariath A., Valvano M. A., Viswanatha T. 1998; Cofactor- and substrate-binding domains in flavin-dependent N -hydroxylating enzymes. Trends Biochem Sci 23:414–415
    [Google Scholar]
  7. Dym O., Eisenberg D. 2001; Sequence-structure analysis of FAD-containing proteins. Protein Sci 10:1712–1728
    [Google Scholar]
  8. Filip C., Fletcher G., Wulff J. L., Earhart C. F. 1973; Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115:717–722
    [Google Scholar]
  9. Ge L., Seah S. Y. 2006; Heterologous expression, purification, and characterization of an l-ornithine N 5-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa . J Bacteriol 188:7205–7210
    [Google Scholar]
  10. Goder V., Spiess M. 2001; Topogenesis of membrane proteins: determinants and dynamics. FEBS Lett 504:87–93
    [Google Scholar]
  11. Guilvout I., Carniel E., Pugsley A. P. 1995; Yersinia spp. HMWP2, a cytosolic protein with a cryptic internal signal sequence which can promote alkaline phosphatase export. J Bacteriol 177:1780–1787
    [Google Scholar]
  12. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  13. Hantash F. M., Earhart C. F. 2000; Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF. J Bacteriol 182:1768–1773
    [Google Scholar]
  14. Herrero M., de Lorenzo V., Neilands J. B. 1988; Nucleotide sequence of the iucD gene of the pColV-K30 aerobactin operon and topology of its product studied with phoA and lacZ gene fusions. J Bacteriol 170:56–64
    [Google Scholar]
  15. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp- FRT recombination system for site-specific excision of chromosomally located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  16. Hopp T. P., Woods K. R. 1983; A computer program for predicting protein antigenic determinants. Mol Immunol 20:483–489
    [Google Scholar]
  17. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  18. Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. 1993; Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol 229:602–608
    [Google Scholar]
  19. Li S. C., Goto N. K., Williams K. A., Deber C. M. 1996; α -Helical, but not β -sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci U S A 93:6676–6681
    [Google Scholar]
  20. Manoil C., Mekalanos J. J., Beckwith J. 1990; Alkaline phosphatase fusions: sensors of subcellular location. J Bacteriol 172:515–518
    [Google Scholar]
  21. Melchers K., Schuhmacher A., Buhmann A., Weitzenegger T., Belin D., Grau S., Ehrmann M. 1999; Membrane topology of CadA homologous P-type ATPase of Helicobacter pylori as determined by expression of phoA fusions in Escherichia coli and the positive inside rule. Res Microbiol 150:507–520
    [Google Scholar]
  22. Meneely K. M., Lamb A. L. 2007; Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa , suggests a novel reaction mechanism. Biochemistry 46:11930–11937
    [Google Scholar]
  23. Michaelis S., Inouye H., Oliver D., Beckwith J. 1983; Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli . J Bacteriol 154:366–374
    [Google Scholar]
  24. Michel G., Bleves S., Ball G., Lazdunski A., Filloux A. 1998; Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa . Microbiology 144:3379–3386
    [Google Scholar]
  25. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  26. Plattner H. J., Pfefferle P., Romaguera A., Waschutza S., Diekmann H. 1989; Isolation and some properties of lysine N 6-hydroxylase from Escherichia coli strain EN222. Biol Met 2:1–5
    [Google Scholar]
  27. Putignani L., Ambrosi C., Ascenzi P., Visca P. 2004; Expression of l-ornithine Ndelta-oxygenase (PvdA) in fluorescent Pseudomonas species: an immunochemical and in silico study. Biochem Biophys Res Commun 313:245–257
    [Google Scholar]
  28. Robles-Price A., Wong T. Y., Sletta H., Valla S., Schiller N. L. 2004; AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa . J Bacteriol 186:7369–7377
    [Google Scholar]
  29. Rosenberg I. M. 2005 Protein Analysis and Purification: Benchtop Techniques , 2nd edn. Cambridge, MA: Birkhauser Boston;
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schweizer H. P. 1991; Escherichia Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121
    [Google Scholar]
  32. Seth O., Smau L., Welte W., Ghisla S., Stehr M., Diekmann H., Macheroux P. et al. 1998; A reply to Dick et al. Trends Biochem Sci 23:414–415
    [Google Scholar]
  33. Stehr M., Diekmann H., Smau L., Seth O., Ghisla S., Singh M., Macheroux P. 1998; A hydrophobic sequence motif common to N -hydroxylating enzymes. Trends Biochem Sci 23:56–57
    [Google Scholar]
  34. Thariath A., Socha D., Valvano M. A., Viswanatha T. 1993; Construction and biochemical characterization of recombinant cytoplasmic forms of the IucD protein (lysine: N6-hydroxylase) encoded by the pColV-K30 aerobactin gene cluster. J Bacteriol 175:589–596
    [Google Scholar]
  35. Tiburzi F., Imperi F., Visca P. 2008; Intracellular levels and activity of PvdS, the major iron starvation sigma factor of Pseudomonas aeruginosa . Mol Microbiol 67:213–227
    [Google Scholar]
  36. Visca P., Serino L., Orsi N. 1992; Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdine. J Bacteriol 174:5727–5731
    [Google Scholar]
  37. Visca P., Ciervo A., Sanfilippo V., Orsi N. 1993; Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001
    [Google Scholar]
  38. Visca P., Ciervo A., Orsi N. 1994; Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N 5-oxygenase in Pseudomonas aeruginosa . J Bacteriol 176:1128–1140
    [Google Scholar]
  39. Visca P., Imperi F., Lamont I. L. 2007; Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30
    [Google Scholar]
  40. von Heijne G. 1992; Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494
    [Google Scholar]
  41. Williams K. A., Deber C. M. 1991; Proline residues in transmembrane helices: structural or dynamic role?. Biochemistry 30:8919–8923
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018804-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018804-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error