1887

Abstract

produces --arabinofuranosidases (EC 3.2.1.55; AFs) capable of releasing arabinosyl oligomers and -arabinose from plant cell walls. Here, we show by insertion-deletion mutational analysis that genes and (), herein renamed , encode AFs responsible for the majority of the intracellular AF activity in . Both enzyme activities were shown to be cytosolic and functional studies indicated that arabino-oligomers are natural substrates for the AFs. The products of the two genes were overproduced in , purified and characterized. The molecular mass of the purified AbfA and Abf2 was about 58 kDa and 57 kDa, respectively. However, native PAGE gradient gel analysis and cross-linking assays detected higher-order structures (>250 kDa), suggesting a multimeric organization of both enzymes. Kinetic experiments at 37 °C, with -nitrophenyl---arabinofuranoside as substrate, gave an apparent of 0.498 mM and 0.421 mM, and of 317 U mg and 311 U mg for AbfA and Abf2, respectively. The two enzymes displayed maximum activity at 50 °C and 60 °C, respectively, and both proteins were most active at pH 8.0. AbfA and Abf2 both belong to family 51 of the glycoside hydrolases but have different substrate specificity. AbfA acts preferentially on (1→5) linkages of linear -1,5--arabinan and -1,5-linked arabino-oligomers, and is much less effective on branched sugar beet arabinan and arabinoxylan and arabinogalactan. In contrast, Abf2 is most active on (1→2) and (1→3) linkages of branched arabinan and arabinoxylan, suggesting a concerted contribution of these enzymes to optimal utilization of arabinose-containing polysaccharides by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018978-0
2008-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2719.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018978-0&mimeType=html&fmt=ahah

References

  1. Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., van Dijl J. M., Hecker M. 2001; A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502
    [Google Scholar]
  2. Beldman G., Schols H. A., Pitson S. M., Searl-van Leeuwen M. J. F., Voragen A. G. 1997; Arabinans and arabinan degrading enzymes. Adv Macromol Carbohydr Res 1:1–64
    [Google Scholar]
  3. Beylot M. H., Emami K., McKie V. A., Gilbert H. J., Pell G. 2001a; Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase. Biochem J 358:599–605
    [Google Scholar]
  4. Beylot M. H., McKie V. A., Voragen A. G., Doeswijk-Voragen C. H., Gilbert H. J. 2001b; The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem J 358:607–614
    [Google Scholar]
  5. Britton H. T. S., Robinson R. A. 1931; Universal buffer solutions and dissociation constant of Veronal. J Chem Soc 456:1456–1462
    [Google Scholar]
  6. Canakci S., Belduz A. O., Saha B. C., Yazar A., Ayaz F. A., Yayli N. 2007; Purification and characterization of a highly thermostable alpha-l-arabinofuranosidase from Geobacillus caldoxylolyticus TK4. Appl Microbiol Biotechnol 75:813–820
    [Google Scholar]
  7. Débarbouillé M., Arnaud M., Fouet A., Klier A., Rapoport G. 1990; The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172:3966–3973
    [Google Scholar]
  8. Debeche T., Cummings N., Connerton I., Debeire P., O'Donohue M. J. 2000; Genetic and biochemical characterization of a highly thermostable α -l-arabinofuranosidase from Thermobacillus xylanilyticus . Appl Environ Microbiol 66:1734–1736
    [Google Scholar]
  9. Degrassi G., Vindigni A., Venturi V. 2003; A thermostable α -arabinofuranosidase from xylanolytic Bacillus pumilus : purification and characterisation. J Biotechnol 101:69–79
    [Google Scholar]
  10. Gilead S., Shoham Y. 1995; Purification and characterization of α -l-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61:170–174
    [Google Scholar]
  11. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J. 1997; Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11:1160–1168
    [Google Scholar]
  12. González-Pastor J. E., Hobbs E. C., Losick R. 2003; Cannibalism by sporulating bacteria. Science 301:510–513
    [Google Scholar]
  13. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68
    [Google Scholar]
  14. Hovel K., Shallom D., Niefind K., Belakhov V., Shoham G., Baasov T., Shoham Y., Schomburg D. 2003; Crystal structure and snapshots along the reaction pathway of a family 51 α -l-arabinofuranosidase. EMBO J 22:4922–4932
    [Google Scholar]
  15. Inácio J. M., de Sá-Nogueira I. 2007; trans -Acting and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis . J Bacteriol 189:8371–8376
    [Google Scholar]
  16. Inácio J. M., Costa C., de Sá-Nogueira I. 2003; Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis . Microbiology 149:2345–2355
    [Google Scholar]
  17. Kaji A., Saheki T. 1975; Endo-arabanase from Bacillus subtilis F-11. Biochim Biophys Acta 410:354–360
    [Google Scholar]
  18. Kaneko S., Sano M., Kusakabe I. 1994; Purification and some properties of α -l-arabinofuranosidase from Bacillus subtilis 3-6. Appl Environ Microbiol 60:3425–3428
    [Google Scholar]
  19. Karow M. L., Piggot P. J. 1995; Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163:69–74
    [Google Scholar]
  20. Kosugi A., Murashima K., Doi R. H. 2002; Characterization of two noncellulosomal subunits, ArfA and Bga, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 184:6859–6865
    [Google Scholar]
  21. Krispin O., Allmansberger R. 1998; The Bacillus subtilis AraE protein displays a broad substrate specificity for several different sugars. J Bacteriol 180:3250–3252
    [Google Scholar]
  22. Leal T. F., Sá-Nogueira I. 2004; Purification, characterization and functional analyses of an endo-arabinanase (AbnA) from Bacillus subtilis . FEMS Microbiol Lett 241:41–48
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Mota L. J., Tavares P., Sá-Nogueira I. 1999; Mode of action of AraR, the key regulator of l-arabinose metabolism in Bacillus subtilis . Mol Microbiol 33:476–489
    [Google Scholar]
  25. Nakai K., Horton P. 1999; PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35
    [Google Scholar]
  26. Numan M. T., Bhosle N. B. 2006; α -l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260
    [Google Scholar]
  27. Pascal M., Kunst F., Lepesant J. A., Dedonder R. 1971; Characterization of two sucrase activities in Bacillus subtilis Marburg. Biochimie 53:1059–1066
    [Google Scholar]
  28. Quisel J. D., Lin D. C.-H., Grossman A. D. 1999; Control of the development by altered localization of a transcription in B. subtilis . Mol Cell 4:665–672
    [Google Scholar]
  29. Raposo M. P., Inácio J. M., Mota L. J., Sá-Nogueira I. 2004; Transcriptional regulation of arabinan-degrading genes in Bacillus subtilis . J Bacteriol 186:1287–1296
    [Google Scholar]
  30. Saha B. C. 2000; α -l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423
    [Google Scholar]
  31. Sakai T., Sakamoto T. 1990; Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin. Agric Biol Chem 54:879–889
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sá-Nogueira I., Mota L. J. 1997; Negative regulation of l-arabinose metabolism in Bacillus subtilis : characterization of the araR ( araC ) gene. J Bacteriol 179:1598–1608
    [Google Scholar]
  34. Sá-Nogueira I., Ramos S. S. 1997; Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in l-arabinose utilization. J Bacteriol 179:7705–7711
    [Google Scholar]
  35. Sá-Nogueira I., Nogueira T. V., Soares S., de Lencastre H. 1997; The Bacillus subtilis l-arabinose ( ara ) operon: nucleotide sequence, genetic organization and expression. Microbiology 143:957–969
    [Google Scholar]
  36. Shallom D., Shoham Y. 2003; Microbial hemicellulases. Curr Opin Microbiol 6:219–228
    [Google Scholar]
  37. Shulami S., Zaide G., Zolotnitsky G., Langut Y., Feld G., Sonenshein A. L., Shoham Y. 2007; A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus . Appl Environ Microbiol 73:874–884
    [Google Scholar]
  38. Somogyi M. 1952; Notes on sugar determination. J Biol Chem 195:19–23
    [Google Scholar]
  39. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  40. Taylor E. J., Smith N. L., Turkenburg J. P., D'Souza S., Gilbert H. J., Davies G. J. 2006; Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum . Biochem J 395:31–37
    [Google Scholar]
  41. Weinstein L., Albersheim P. 1979; Structure of plant cell walls. IX. Purification and partial characterization of a wall-degrading endo-arabanase and an arabinosidase from Bacillus subtilis . Plant Physiol 63:425–432
    [Google Scholar]
  42. Wipat A., Carter N., Brignell S. C., Guy B. J., Piper K., Sanders J., Emmerson P. T., Harwood C. R. 1996; The dnaB-pheA (25 °–24 °) region of the Bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism. Microbiology 142:3067–3078
    [Google Scholar]
  43. Zilhão R., Serrano M., Isticato R., Ricca E., Moran C. P. Jr, Henriques A. O. 2004; Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 186:1110–1119
    [Google Scholar]
  44. Zverlov V. V., Liebl W., Bachleitner M., Schwarz W. H. 1998; Nucleotide sequence of arfB of Clostridium stercorarium , and prediction of calalytic residues of alpha-l-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol Lett 164:337–343
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018978-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018978-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error