1887

Abstract

The species that presently constitute the complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the gene cluster by mannitol, and found a clear correlation between the inability of representatives of the ET12 lineage to produce EPS and the presence of an 11 bp deletion within the gene, which encodes a glycosyltransferase. Insertional inactivation of in AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019216-0
2008-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2513.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019216-0&mimeType=html&fmt=ahah

References

  1. Allenza P., Lee Y. N., Lessie T. G. 1982; Enzymes related to fructose utilization in Pseudomonas cepacia . J Bacteriol 150:1348–1356
    [Google Scholar]
  2. Bernier S. P., Silo-Suh L., Woods D. E., Ohman D. E., Sokol P. A. 2003; Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–5313
    [Google Scholar]
  3. Burkholder W. 1950; Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117
    [Google Scholar]
  4. Bylund J., Burgess L. A., Cescutti P., Ernst R. K., Speert D. P. 2006; Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:2526–2532
    [Google Scholar]
  5. Coenye T., Vandamme P., LiPuma J. J., Govan J. R., Mahenthiralingam E. 2003; Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41:2797–2798
    [Google Scholar]
  6. Conway B. A., Chu K. K., Bylund J., Altman E., Speert D. P. 2004; Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J Infect Dis 190:957–966
    [Google Scholar]
  7. Cunha M. V., Sousa S. A., Leitao J. H., Moreira L. M., Videira P. A., Sa-Correia I. 2004; Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol 42:3052–3058
    [Google Scholar]
  8. Daviskas E., Anderson S. D., Eberl S., Young I. H. 2008; Effect of increasing doses of mannitol on mucus clearance in patients with bronchiectasis. Eur Respir J 31:765–772
    [Google Scholar]
  9. Eshdat Y., Mirelman D. 1972; An improved method for the recovery of compounds from paper chromatograms. J Chromatogr 65:458–459
    [Google Scholar]
  10. Ferreira A. S., Leitao J. H., Sousa S. A., Cosme A. M., Sa-Correia I., Moreira L. M. 2007; Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol 73:524–534
    [Google Scholar]
  11. Flannagan R. S., Aubert D., Kooi C., Sokol P. A., Valvano M. A. 2007; Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 75:1679–1689
    [Google Scholar]
  12. Fry S. C. 2000 The Growing Plant Cell Wall: Chemical and Metabolic Analysis Caldwell, NJ: The Blackburn Press;
    [Google Scholar]
  13. Goldberg J. B. 2007; Polysaccharides of Burkholderia spp. In Burkholderia: Molecular Microbiology and Genomics pp 93–110 Edited by Coenye T., Vandamme P. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  14. Govan J. R. W. 2006; Burkholderia cepacia complex and Stenotrophomonas maltophilia. In Cystic Fibrosis in the 21st Century: Progress in Respiratory Research . pp 145–152 Edited by Bush A., Alton E. W. F. W., Davies J. C., Griesenbach U., Jaffe A. Basel: Karger;
  15. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  16. Govan J. R., Brown P. H., Maddison J., Doherty C. J., Nelson J. W., Dodd M., Greening A. P., Webb A. K. 1993; Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342:15–19
    [Google Scholar]
  17. Herasimenka Y., Benincasa M., Mattiuzzo M., Cescutti P., Gennaro R., Rizzo R. 2005; Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides 26:1127–1132
    [Google Scholar]
  18. Mahenthiralingam E., Simpson D. A., Speert D. P. 1997; Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol 35:808–816
    [Google Scholar]
  19. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  20. Mahenthiralingam E., Urban T. A., Goldberg J. B. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156
    [Google Scholar]
  21. Miroux B., Walker J. E. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298
    [Google Scholar]
  22. Moreira L. M., Videira P. A., Sousa S. A., Leitao J. H., Cunha M. V., Sa-Correia I. 2003; Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun 312:323–333
    [Google Scholar]
  23. Ortega X., Hunt T. A., Loutet S., Vinion-Dubiel A. D., Datta A., Choudhury B., Goldberg J. B., Carlson R., Valvano M. A. 2005; Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187:1324–1333
    [Google Scholar]
  24. Parsons Y. N., Banasko R., Detsika M. G., Duangsonk K., Rainbow L., Hart C. A., Winstanley C. 2003; Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch Microbiol 179:214–223
    [Google Scholar]
  25. Robinson M., Daviskas E., Eberl S., Baker J., Chan H. K., Anderson S. D., Bye P. T. 1999; The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. Eur Respir J 14:678–685
    [Google Scholar]
  26. Sage A., Linker A., Evans L. R., Lessie T. G. 1990; Hexose phosphate metabolism and exopolysaccharide formation in Pseudomonas cepacia . Curr Microbiol 20:191–198
    [Google Scholar]
  27. Sajjan U. S., Sun L., Goldstein R., Forstner J. F. 1995; Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 177:1030–1038
    [Google Scholar]
  28. Sist P., Cescutti P., Skerlavaj S., Urbani R., Leitao J. H., Sa-Correia I., Rizzo R. 2003; Macromolecular and solution properties of cepacian: the exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res 338:1861–1867
    [Google Scholar]
  29. Sousa S. A., Ulrich M., Bragonzi A., Burke M., Worlitzsch D., Leitão J. H., Meisner C., Eberl L., Sá-Correia I., DÖring G. 2007a; Virulence of Burkholderia cepacia complex strains in gp91phox−/− mice. Cell Microbiol 9:2817–2825
    [Google Scholar]
  30. Sousa S. A., Moreira L. M., Wopperer J., Eberl L., Sá-Correira I., Leitão J. H. 2007b; The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-d-mannose pyrophosphorylase activities. Biochem Biophys Res Commun 353:200–206
    [Google Scholar]
  31. Videira P. A., Garcia A. P., Sa-Correia I. 2005; Functional and topological analysis of the Burkholderia cenocepacia priming glucosyltransferase BceB, involved in the biosynthesis of the cepacian exopolysaccharide. J Bacteriol 187:5013–5018
    [Google Scholar]
  32. Whitchurch C. B., Alm R. A., Mattick J. S. 1996; The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 93:9839–9843
    [Google Scholar]
  33. Wills P. J. 2007; Inhaled mannitol in cystic fibrosis. Expert Opin Investig Drugs 16:1121–1126
    [Google Scholar]
  34. Zlosnik J. E., Hird T. J., Fraenkel M. C., Moreira L. M., Henry D. A., Speert D. P. 2008; Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol 46:1470–1473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019216-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019216-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error