1887

Abstract

The genes encode an ATP-binding cassette (ABC) transporter, which is one of the uptake systems for ,′-diacetylchitobiose [(GlcNAc)] in A3(2), although the gene encoding the ABC subunit that provides ATP hydrolysis for DasABC has not been identified. In this study, we disrupted the sequence that is highly homologous to the gene, the product of which is an ABC subunit assisting several ABC permeases in other species. Disruption of severely affected the ability of A3(2) to utilize maltose, cellobiose, starch, cellulose, chitin and chitosan, but not glucose. The null mutant lacked (GlcNAc)-uptake activity, but GlcNAc transport activity was unaffected. The data indicated that is essential for (GlcNAc) uptake, which in A3(2) is governed by ABC transporters including the DasABC–MsiK system, in contrast to and , in which (GlcNAc) uptake is mediated by the phosphotransferase system. Interestingly, the induction of chitinase production by (GlcNAc) or chitin was absent in the null mutant, unlike in the parent strain M145. The defect in chitinase gene induction was rescued by expressing the His-tagged MsiK protein under the control of the putative native promoter on a multicopy plasmid. The data suggest that uptake of (GlcNAc) is necessary for induction of chitinase production. The gene was constitutively transcribed, whereas the transcription of [(GlcNAc)-binding protein gene], (putative maltose-binding protein gene), (putative cellobiose-binding protein gene) and (putative xylobiose-binding protein gene) was induced by their corresponding sugar ligands. This is believed to be the first report to indicate that (GlcNAc) uptake mediated by ABC transporters is essential for chitinase production in streptomycetes, which are known to be the main degraders of chitin in soil.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019612-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3358.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019612-0&mimeType=html&fmt=ahah

References

  1. Alting-Mees M. A., Short J. M. 1989; pBluescript II: gene mapping vectors. Nucleic Acids Res 17:9494
    [Google Scholar]
  2. Bertram R., Schlicht M., Mahr K., Nothaft H., Saier M. H. Jr, Titgemeyer F. 2004; In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2. J Bacteriol 186:1362–1373
    [Google Scholar]
  3. Blaak H., Schnellmann J., Walter S., Henrissat B., Schrempf H. 1993; Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214:659–669
    [Google Scholar]
  4. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces . Gene 190:315–317
    [Google Scholar]
  5. Colson S., van Wezel G. P., Craig M., Noens E. E. E., Nothaft H., Mommaas A. M., Titgemeyer F., Joris B., Rigali S. 2008; The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor A3(2. Microbiology 154:373–382
    [Google Scholar]
  6. Hurtubise Y., Shareck F., Kluepfel D., Morosoli R. 1995; A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol 17:367–377
    [Google Scholar]
  7. Janssen G. R., Bibb M. J. 1993; Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134
    [Google Scholar]
  8. Keyhani N. O., Wang L. X., Lee Y. C., Roseman S. 2000; The chitin disaccharide, N, N′-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate : glucose phosphotransferase system. J Biol Chem 275:33084–33090
    [Google Scholar]
  9. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  10. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  11. Miyashita K., Fujii T., Sawada Y. 1991; Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. J Gen Microbiol 137:2065–2072
    [Google Scholar]
  12. Muth G., Nußbaumer B., Wohlleben W., Pühler A. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348
    [Google Scholar]
  13. Nguyen J., Francou F., Viroll M.-J., Guérineau M. 1997; Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol 179:6383–6390
    [Google Scholar]
  14. Nothaft H., Dresel D., Willmek A., Mahr K., Niederweis M., Titgemeyer F. 2003; The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185:7019–7023
    [Google Scholar]
  15. Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M., Watanabe T. 1996; A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT6037. J Bacteriol 178:5065–5070
    [Google Scholar]
  16. Saito A., Schrempf H. 2004; Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis . Mol Genet Genomics 271:545–553
    [Google Scholar]
  17. Saito A., Fujii T., Miyashita K. 1999; Chitinase system in Streptomyces . Actinomycetologica 13:1–10
    [Google Scholar]
  18. Saito A., Ishizaka M., Francisco P. B. Jr, Fujii T., Miyashita K. 2000; Transcriptional co-regulation of five chitinase genes scattered on the Streptomyces coelicolor A3(2) chromosome. Microbiology 146:2937–2946
    [Google Scholar]
  19. Saito A., Shinya T., Miyamoto K., Yokoyama T., Kaku H., Minami E., Shibuya N., Tsujibo H., Nagata Y. other authors 2007; The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N′-diacetylchitobiose in Streptomyces coelicolor A3(2. Appl Environ Microbiol 73:3000–3008
    [Google Scholar]
  20. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Schlochtermeier A., Walter S., Schröder J., Moorman M., Schrempf H. 1992; The gene encoding the cellulase (avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol 6:3611–3621
    [Google Scholar]
  22. Schlösser A. 2000; MsiK-dependent trehalose uptake in Streptomyces reticuli . FEMS Microbiol Lett 184:187–192
    [Google Scholar]
  23. Schlösser A., Kampers T., Schrempf H. 1997; The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J Bacteriol 179:2092–2095
    [Google Scholar]
  24. Schlösser A., Jantos J., Hackmann K., Schrempf H. 1999; Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli . Appl Environ Microbiol 65:2636–2643
    [Google Scholar]
  25. Tsujibo H., Kosaka M., Ikenishi S., Sato T., Miyamoto K., Inamori Y. 2004; Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J Bacteriol 186:1029–1037
    [Google Scholar]
  26. Uchiyama T., Kaneko R., Yamaguchi J., Inoue A., Yanagida T., Nikaidou N., Regue M., Watanabe T. 2003; Uptake of N, N′-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol 185:1776–1782
    [Google Scholar]
  27. van Wezel G. P., White J., Bibb M. J., Postma P. W. 1997a; The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol Gen Genet 254:604–608
    [Google Scholar]
  28. van Wezel G. P., White J., Young P., Postma P. W., Bibb M. J. 1997b; Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI- galR family of regulatory genes. Mol Microbiol 23:537–549
    [Google Scholar]
  29. Vara J., Lewandowska-Skarbek M., Wang Y. G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea ( Streptomyces erythreus . J Bacteriol 171:5872–5881
    [Google Scholar]
  30. Xiao X., Wang F., Saito A., Majka J., Schlösser A., Schrempf H. 2002; The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N, N′-diacetylchitobiose. Mol Genet Genomics 267:429–439
    [Google Scholar]
  31. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019612-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019612-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error