1887

Abstract

The DnaA protein is the bacterial initiator of replication at a unique chromosomal site, . It is present in all bacterial species and has a conserved structure with four domains. The structures of domains I and III–IV have been solved recently for some bacterial species, and the molecular process leading to the initiation event has been investigated in detail. On the other hand, domain II appears to have no rigid structure and is assumed to be a flexible linker connecting the N-terminal domain I and the C-terminal domains III–IV. It differs significantly in length and amino acid sequence among bacterial species. Whether or not domain II has any function(s) to initiate replication is unknown. The precise borders at both of its ends as well as its essential portions for cell viability are also unknown. In this study, we introduced systematic deletions into the domain II region on the chromosomal gene of and examined their effect on cell physiology. Stretches of 30–36 consecutive amino acid residues could be deleted from various portions between the 78th and the 136th residues without affecting cell viability. We propose that domain II of DnaA is from the 79th to the 135th residues and at least 21–27 residues are required as a spacer to keep domains I and III–IV in the correct positions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019745-0
2008-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3379.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019745-0&mimeType=html&fmt=ahah

References

  1. Abe Y., Jo T., Matsuda Y., Matsunaga C., Katayama T., Ueda T. 2007; Structure and function of DnaA N-terminal domain: specific sites and mechanisms in inter-DnaA interaction and DnaB helicase loading on oriC . J Biol Chem 282:17816–17827
    [Google Scholar]
  2. Bramhill D., Kornberg A. 1988; Duplex opening by DnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52:743–755
    [Google Scholar]
  3. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acids. Biochem J 62:315–322
    [Google Scholar]
  4. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . J Mol Biol 138:179–207
    [Google Scholar]
  5. Dixon N. E., Kornberg A. 1984; Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coli . Proc Natl Acad Sci U S A 81:424–428
    [Google Scholar]
  6. Elledge S. J., Walker G. C. 1983; Proteins required for ultraviolet light and chemical mutagenesis: identification of the products of the umuC locus of Escherichia coli . J Mol Biol 164:175–192
    [Google Scholar]
  7. Erzberger J. P., Pirruccello M. M., Berger J. M. 2002; The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 21:4763–4773
    [Google Scholar]
  8. Erzberger J. P., Mott M. L., Berger J. M. 2006; Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13:676–683
    [Google Scholar]
  9. Fujikawa N., Kurumizaka H., Nureki O., Terada T., Shirouzu M., Katayama T., Yokoyama S. 2003; Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res 31:2077–2086
    [Google Scholar]
  10. Ishida T., Akimitsu N., Kashioka T., Hatano M., Kubota T., Ogata Y., Sekimizu K., Katayama T. 2004; DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 279:45546–45555
    [Google Scholar]
  11. Kaguni J. M. 2006; DnaA: controlling the initiation of bacterial DNA replication and more. Annu Rev Microbiol 60:351–375
    [Google Scholar]
  12. Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K. 1998; The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94:61–71
    [Google Scholar]
  13. Kawakami H., Keyamura K., Katayama T. 2005; Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family. J Biol Chem 280:27420–27430
    [Google Scholar]
  14. Kitagawa R., Mitsuki H., Okazaki T., Ogawa T. 1996; A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol Microbiol 19:1137–1147
    [Google Scholar]
  15. Kitagawa R., Ozaki T., Moriya S., Ogawa T. 1998; Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev 12:3032–3043
    [Google Scholar]
  16. Kurokawa K., Nishida S., Emoto A., Sekimizu K., Katayama T. 1999; Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli . EMBO J 18:6642–6652
    [Google Scholar]
  17. Leonard A. C., Grimwade J. E. 2005; Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding. Mol Microbiol 55:978–985
    [Google Scholar]
  18. Løbner-Olesen A., Skarstad K., Hansen F. G., von Meyenburg K., Boye E. 1989; The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57:881–889
    [Google Scholar]
  19. Lowery T. J., Pelton J. G., Chandonia J. M., Kim R., Yokota H., Wemmer D. E. 2007; NMR structure of the N-terminal domain of the replication initiator protein DnaA. J Struct Funct Genomics 8:11–17
    [Google Scholar]
  20. Lu M., Campbell J. L., Boye E., Kleckner N. 1994; SeqA: a negative modulator of replication initiation in E. coli . Cell 77:413–426
    [Google Scholar]
  21. McGarry K. C., Ryan V. T., Grimwade J. E., Leonard A. C. 2004; Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci U S A 101:2811–2816
    [Google Scholar]
  22. Messer W. 2002; The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 26:355–374
    [Google Scholar]
  23. Messer W., Blaesing F., Majka J., Nardmann J., Schaper S., Schmidt A., Seitz H., Speck C., Tüngler C. other authors 1999; Functional domains of DnaA proteins. Biochimie 81:819–825
    [Google Scholar]
  24. Mott M. L., Berger J. M. 2007; DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5:343–354
    [Google Scholar]
  25. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Schaper S., Messer W. 1997; Prediction of the structure of the replication initiator protein DnaA. Proteins 28:1–9
    [Google Scholar]
  27. Seitz H., Weigel C., Messer W. 2000; The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli . Mol Microbiol 37:1270–1279
    [Google Scholar]
  28. Simmons L. A., Felczak M., Kaguni J. M. 2003; DnaA protein of Escherichia coli: oligomerization at the E. coli chromosomal origin is required for initiation and involves specific N-terminal amino acids. Mol Microbiol 49:849–858
    [Google Scholar]
  29. Sutton M. D., Carr K. M., Vicente M., Kaguni J. M. 1998; Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 273:34255–34262
    [Google Scholar]
  30. Weigel C., Schmidt A., Seitz H., Tungler D., Welzeck M., Messer W. 1999; The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Mol Microbiol 34:53–66
    [Google Scholar]
  31. Wold S., Skarstad K., Steen H. B., Stokke T., Boye E. 1994; The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J 13:2097–2102
    [Google Scholar]
  32. Zahn G., Messer W. 1979; Control of the initiation of DNA replication in Escherichia coli. II. Function of the dnaA product. Mol Gen Genet 168:197–209
    [Google Scholar]
  33. Zawilak-Pawlik A., Kois A., Majka J., Jakimowicz D., Smulczyk-Krawczyszyn A., Messer W., Zakrzewska-Czerwińska J. 2005; Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria. Biochem J 389:471–481
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019745-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019745-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error