1887

Abstract

Under conditions of nitrogen limitation, the general transcription factor TnrA in activates the expression of genes involved in assimilation of various nitrogen sources. Previously, TnrA activity has been shown to be controlled by protein–protein interaction with glutamine synthetase, the key enzyme of ammonia assimilation. Furthermore, depending on ATP and 2-oxoglutarate levels, TnrA can bind to the GlnK–AmtB complex. Here, we report that upon transfer of nitrate-grown cells to combined nitrogen-depleted medium, TnrA is rapidly eliminated from the cells by proteolysis. As long as TnrA is membrane-bound through GlnK–AmtB interaction it seems to be protected from degradation. Upon removal of nitrogen sources, the localization of TnrA becomes cytosolic and degradation occurs. The proteolytic activity against TnrA was detected in the cytosolic fraction but not in the membrane, and its presence does not depend on the nitrogen regime of cell growth. The proteolytic degradation of TnrA as a response to complete nitrogen starvation might represent a novel mechanism of TnrA control in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019802-0
2008-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2348.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019802-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  2. Becker G., Klauck E., Hengge-Aronis R. 2000; The response regulator RssB, a recognition factor for σ S proteolysis in Escherichia coli, can act like an anti- σ S factor. Mol Microbiol 35:657–666
    [Google Scholar]
  3. Belitsky B. R., Wray L. V. Jr, Fisher S. H., Bohannon D. E., Sonenshein A. L. 2000; Role of TnrA in nitrogen source dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol 182:5939–5947
    [Google Scholar]
  4. Blencke H. M., Homuth G., Ludwig H., Mader U., Hecker M., Stülke J. 2003; Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5:133–149
    [Google Scholar]
  5. Detsch C., Stülke J. 2003; Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology 149:3289–3297
    [Google Scholar]
  6. Deuel T. F., Prusiner S. 1974; Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and l-glutamine. J Biol Chem 249:257–264
    [Google Scholar]
  7. Faires N., Tobisch S., Bachem S., Martin-Verstraete I., Hecker M., Stülke J. 1999; The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis . J Mol Microbiol Biotechnol 1:141–148
    [Google Scholar]
  8. Fisher S. H. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference!. Mol Microbiol 32:223–232
    [Google Scholar]
  9. Fisher S. H., Debarbouille M. 2002; Nitrogen source utilization and its regulation. In Bacillus subtilis and its Closest Relatives: from Genes to Cells . pp 181–191 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
  10. Fisher S. H., Brandenburg J. L., Wray L. V. Jr 2002; Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA. Mol Microbiol 45:627–635
    [Google Scholar]
  11. Forchhammer K. 2007; Glutamine signalling in bacteria. Front Biosci 12:358–370
    [Google Scholar]
  12. Heinrich A., Woyda K., Brauburger K., Meiss G., Detsch C., Stülke J., Forchhammer K. 2006; Interaction of the membrane-bound GlnK–AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis . J Biol Chem 281:34909–34917
    [Google Scholar]
  13. Hengge-Aronis R. 2000; A role for the sigma S subunit of RNA polymerase in the regulation of bacterial virulence. Adv Exp Med Biol 485:85–93
    [Google Scholar]
  14. Herman C., Lecat S., D'Ari R., Bouloc P. 1995a; Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli . Mol Microbiol 18:247–255
    [Google Scholar]
  15. Herman C., Thevenet D., D'Ari R., Bouloc P. 1995b; Degradation of σ 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92:3516–3520
    [Google Scholar]
  16. Javelle A., Severi E., Thornton J., Merrick M. 2004; Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB–GlnK complex formation. J Biol Chem 279:8530–8538
    [Google Scholar]
  17. Khademi S., Stroud R. M. 2006; The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction. Physiology (Bethesda) 21:419–429
    [Google Scholar]
  18. Msadek T., Dartois V., Kunst F., Herbaud M. L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914
    [Google Scholar]
  19. Nakano M. M., Yang F., Hardin P., Zuber P. 1995; Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis . J Bacteriol 177:573–579
    [Google Scholar]
  20. Nakano M. M., Hoffmann T., Zhu Y., Jahn D. 1998; Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol 180:5344–5350
    [Google Scholar]
  21. Reeves A., Gerth U., VÖlker U., Haldenwang W. G. 2007; ClpP modulates the activity of the Bacillus subtilis stress response transcription factor, σ B . J Bacteriol 189:6168–6175
    [Google Scholar]
  22. Riethdorf S., VÖlker U., Gerth U., Winkler A., Engelmann S., Hecker M. 1994; Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J Bacteriol 176:6518–6527
    [Google Scholar]
  23. Tam L. T., Eymann C., Antelmann H., Albrecht D., Hecker M. 2007; Global gene expression profiling of Bacillus subtilis in response to ammonium and tryptophan starvation as revealed by transcriptome and proteome analysis. J Mol Microbiol Biotechnol 12:121–130
    [Google Scholar]
  24. Wacker I., Ludwig H., Reif I., Blencke H.-M., Detsch C., Stülke J. 2003; The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology 149:3001–3009
    [Google Scholar]
  25. Wray L. V., Fisher S. H. 2006; Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein. J Bacteriol 189:20–27
    [Google Scholar]
  26. Wray L. V. Jr, Atkinson M. R., Fisher S. H. 1994; The nitrogen regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein. J Bacteriol 176:108–114
    [Google Scholar]
  27. Wray L. V. Jr, Ferson A. E., Rohrer K., Fisher S. H. 1996; TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis . Proc Natl Acad Sci U S A 93:8841–8845
    [Google Scholar]
  28. Wray L. V. Jr, Ferson K., Fisher S. H. 1997; Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. J Bacteriol 179:5494–5501
    [Google Scholar]
  29. Wray L. V. Jr, Zalieckas J. M., Ferson A. E., Fisher S. H. 1998; Mutational analysis of the TnrA-binding sites in the Bacillus subtilis nrgAB and gabP promoter regions. J Bacteriol 180:2943–2949
    [Google Scholar]
  30. Wray L. V. Jr, Zalieckas J. M., Fisher S. H. 2000; Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. J Mol Biol 300:29–40
    [Google Scholar]
  31. Wray L. V. Jr, Zalieckas J. M., Fisher S. H. 2001; Bacillus subtilis glutamine synthetase controls gene expression through a protein–protein interaction with transcription factor TnrA. Cell 107:427–435
    [Google Scholar]
  32. Yura T., Nakahigashi K. 1999; Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158
    [Google Scholar]
  33. Zhou Y. N., Gottesman S., Hoskins J. R., Maurizi M. R., Wickner S. 2001; The RssB response regulator directly targets σ S for degradation by ClpXP. Genes Dev 15:627–637
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019802-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019802-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error