1887

Abstract

During applications of 5-fluorocytosine (5FC) and fluconazole (FLC), additive or synergistic action may even occur when primary resistance to 5FC is established. Here, we analysed conjoint drug action in strains deficient in genes known to be essential for 5FC or FLC function. Despite clear primary resistance, residual 5FC activity and additive 5FC+FLC action in cells lacking cytosine permease (Fcy2p) or uracil phosphoribosyl transferase (Fur1p) were detected. In contrast, Δ mutants, lacking cytosine deaminase, became entirely resistant to 5FC, concomitantly losing 5FC+FLC additivity. Disruption of the orotate phosphoribosyltransferase gene () in the wild-type led to low-level 5FC tolerance, while an alternative orotate phosphoribosyltransferase, encoded by , contributed to 5FC toxicity only in the Δ background. Remarkably, combination of Δ and Δ resulted in complete 5FC resistance. Thus, yeast orotate phosphoribosyltransferases are involved in 5FC metabolism. Similarly, disruption of the ergosterol Δ-desaturase-encoding gene resulted only in partial resistance to FLC, and concomitantly a synergistic effect with 5FC became evident. Full resistance to FLC occurred in Δ Δ double mutants and, simultaneously, synergism or even an additive effect with FLC and 5FC was no longer discernible. Since the majority of spontaneously occurring resistant yeast clones displayed residual sensitivity to either 5FC or FLC and those strains responded to combined drug treatment in a predictable manner, careful resistance profiling based on the findings reported here may help to address yeast infections by combined application of antimycotic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020107-0
2008-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3154.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020107-0&mimeType=html&fmt=ahah

References

  1. Agarwal A. K., Rogers P. D., Baerson S. R., Jacob M. R., Barker K. S., Cleary J. D., Walker L. A., Nagle D. G., Clark A. M. 2003; Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae . J Biol Chem 278:34998–35015
    [Google Scholar]
  2. Alexander B. D., Perfect J. R. 1997; Antifungal resistant trends towards the year 2000: Implications of therapy and new approaches. Drugs 54:657–678
    [Google Scholar]
  3. Allendoerfer R., Marquis A. J., Rinaldi M. J., Graybill J. R. 1991; Combined therapy with fluconazole and flucytosine in murine cryptococcal meningitis. Antimicrob Agents Chemother 35:726–729
    [Google Scholar]
  4. Arthington B. A., Bennett L. G., Skatrud P. L., Guynn C. J., Barbuch R. J., Ulbright C. E., Bard M. 1991; Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 102:39–44
    [Google Scholar]
  5. Bammert G. F., Fostel J. M. 2000; Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265
    [Google Scholar]
  6. Bard M., Lees N. D., Turi T., Craft D., Cofrin L., Barbuch R., Koegel C., Loper J. C. 1993; Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans . Lipids 28:963–967
    [Google Scholar]
  7. Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. 1991; Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173:2250–2255
    [Google Scholar]
  8. Chevallier M. R., Jund R., Lacroute F. 1975; Characterization of cytosine permeation in Saccharomyces cerevisiae . J Bacteriol 122:629–641
    [Google Scholar]
  9. de Kruijff B., Demel R. A. 1974; Polyene antibiotic–sterol interactions in membranes of acholeplasma-laidlawii cells and lecithin liposomes. 3. Molecular structure of polyene antibiotic–cholesterol complexes. Biochim Biophys Acta 339:57–70
    [Google Scholar]
  10. de Kruijff B., Gerritsen W. J., Oerleman A., Demel R. A., Van Deenen L. L. M. 1974; Polyene antibiotic–sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 1. Specificity of membrane-permeability changes induced by polyene antibiotics. Biochim Biophys Acta 339:30–43
    [Google Scholar]
  11. de Montigny J., Kern L., Hubert J. C., Lacroute F. 1990; Cloning and sequencing of URA10, a second gene encoding orotate phosphoribosyl transferase in Saccharomyces cerevisiae . Curr Genet 17:105–111
    [Google Scholar]
  12. Elfopouios G. M., Moellering R. C. Jr 1991; Antimicrobial combinations. In Antibiotics in Laboratory Medicine , 3rd edn. pp 432–492 Edited by Lorian U. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  13. Erbs P., Exinger F., Jund R. 1997; Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans . Curr Genet 31:1–6
    [Google Scholar]
  14. Fasoli M. O., Kerridge D., Morris P. G., Torosantucci A. 1990; 19F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob Agents Chemother 34:1996–2006
    [Google Scholar]
  15. Ghannoum M. A., Rice L. B. 1999; Antifungal agents mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517
    [Google Scholar]
  16. Gietz R. D., Schiestl R. H. 1995; Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269
    [Google Scholar]
  17. Gueldener U., Heinisch J., Koehler G. J., Voss D., Hegemann J. H. 2002; A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23
    [Google Scholar]
  18. Hartmann K. U., Heidelberger C. 1961; Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J Biol Chem 236:3006–3013
    [Google Scholar]
  19. Hendriks L., Goris A., Neefs J., van de Peer Y., Hiennebert G., de Wachter R. 1989; The nucleotide sequence of the small ribosomal subunit RNA of the yeast Candida albicans and the evolutionary position of the fungi among the eukaryotes. Syst Appl Microbiol 12:223–229
    [Google Scholar]
  20. Hitchcock C. A. 1991; Cytochrome P-450-dependent 14 α-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem Soc Trans 19:782–787
    [Google Scholar]
  21. Johnson D. M., MacDougall C., Ostrosky-Zeichner L., Perfect J. R., Rex J. R. 2004; Combination antifungal therapy. Antimicrob Agents Chemother 48:693–715
    [Google Scholar]
  22. Joseph-Horne T., Hollomon D. W. 1997; Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 149:141–149
    [Google Scholar]
  23. Jund R., Lacroute F. 1970; Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae . J Bacteriol 102:607–615
    [Google Scholar]
  24. Kaiser C., Michaelis S., Mitchell A. 1994 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Kalb V. F., Woods C. W., Turi T. G., Dey C. R., Sutter T. R., Loper J. C. 1987; Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae . DNA 6:529–537
    [Google Scholar]
  26. Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Kelly D. E. 1995; Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3-beta,6-alpha-diol. Biochem Biophys Res Commun 207:910–915
    [Google Scholar]
  27. Kern L., de Montigny J., Jund J., Lacroute F. 1990; The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88:149–157
    [Google Scholar]
  28. Kurtz J. E., Exinger F., Erbs P., Jund R. 1999; New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine metabolism. Curr Genet 36:130–136
    [Google Scholar]
  29. Lupetti A., Danesi R., Campa M., Del Tacca M., Kelly S. 2002; Molecular basis of resistance to azole antifungals. Trends Mol Med 8:76–81
    [Google Scholar]
  30. Mukherjee P. K., Sheehan D. J., Hitchcock C. A., Ghannoum M. A. 2005; Combination treatment of invasive fungal infections. Clin Microbiol Rev 18:163–194
    [Google Scholar]
  31. NCCLS 1998 Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: proposed standard M38-P Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  32. Paluszynski J. P., Klassen R., Rohe M., Meinhardt F. 2006; Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccharomyces cerevisiae . Yeast 23:707–715
    [Google Scholar]
  33. Peters G. J., Laurensse E., Lankelma J., Leyva A., Pinedo H. M. 1984; Separation of several 5-fluorouracil metabolites in various melanoma cell lines. Evidence for the synthesis of 5-fluorouracil nucleotide sugars. Eur J Cancer Clin Oncol 20:1425–1431
    [Google Scholar]
  34. Polak A., Scholer H. 1975; Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sanglard D., Ischer F., Parkinson T., Falconer D., Bille J. 2003; Candida albicans mutations in the ergosterol biosynthesis pathway and resistance to several other agents. Antimicrob Agents Chemother 47:2404–2412
    [Google Scholar]
  37. Schwarz P., Dromer F., Lortholary O., Dannaoui E. 2003; In vitro interaction of flucytosine with conventional and new antifungals against Cryptococcus neoformans clinical isolates. Antimicrob Agents Chemother 47:3361–3364
    [Google Scholar]
  38. Schwarz P., Dromer F., Lortholary O., Dannaoui E. 2006; Efficacy of amphotericin B in combination with flucytosine against flucytosine-susceptible or flucytosine-resistant isolates of Cryptococcus neoformans during disseminated murine cryptococcosis. Antimicrob Agents Chemother 50:113–120
    [Google Scholar]
  39. Schwarz P., Janbon G., Dromer F., Lortholary O., Dannaoui E. 2007; Combination of amphotericin B with flucytosine is active in vitro against flucytosine-resistant isolates of Cryptococcus neoformans . Antimicrob Agents Chemother 51:383–385
    [Google Scholar]
  40. Smith S. J., Crowley J. H., Parks L. W. 1996; Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae . Mol Cell Biol 16:5427–5432
    [Google Scholar]
  41. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  42. Te Dorsthorst D. T. A., Verweij P. E., Meletiadis J., Bergervoet M., Punt N. C., Meis J. F. G. M., Mouton J. W. 2002; In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob Agents Chemother 46:2982–2989
    [Google Scholar]
  43. Vanden Bossche H. 1985; Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In Current Topics in Medical Mycology vol. 1 pp 313–351 Edited by McGinnis M. R. New York: Springer-Verlag;
    [Google Scholar]
  44. Vanden Bossche H., Willemsens G., Marichal P. 1987; Anti- Candida drugs: the biochemical analysis for their activity. Crit Rev Microbiol 15:57–72
    [Google Scholar]
  45. Vanden Bossche H., Marichal P., Odds F. C., Jeune L., Coene M. C. 1992; Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 36:2602–2610
    [Google Scholar]
  46. Vanden Bossche H., Marichal P., Odds F. C. 1994; Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2:393–400
    [Google Scholar]
  47. Wach A., Brachat A., Pöhlmann R., Philippsen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10:1793–1808
    [Google Scholar]
  48. Wadler S., Horowitz R., Zhang H. Y., Schwartz E. L. 1998; Effects of perturbations of pools of deoxyribonucleoside triphosphates on expression of ribonucleotide reductase, a G1/S transition state enzyme, in p53-mutated cells. Biochem Pharmacol 55:1353–1360
    [Google Scholar]
  49. Watson P. F., Rose M. E., Kelly S. L. 1988; Isolation and analysis of ketoconazole mutants of Saccharomyces cerevisiae . J Med Vet Mycol 26:153–162
    [Google Scholar]
  50. Watson P. F., Rose M. E., Ellis S. W., England H., Kelly S. L. 1989; Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole anti-fungals. Biochem Biophys Res Commun 164:1170–1175
    [Google Scholar]
  51. Whelan W. L. 1987; The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans . Crit Rev Microbiol 15:45–56
    [Google Scholar]
  52. Yanisch-Perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020107-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020107-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error