1887

Abstract

The HtrA (DegP) protein from is a periplasmic protease whose function is to protect cells from the deleterious effects of various stress conditions. At temperatures below 28 °C the proteolytic activity of HtrA was regarded as negligible and it was believed that the protein mainly plays the role of a chaperone. In the present work we provide evidence that HtrA can in fact act as a protease at low temperatures. Under folding stress, caused by disturbances in the disulfide bond formation, the lack of proteolytic activity of HtrA lowered the survival rates of mutant strains deprived of a functional DsbA/DsbB oxidoreductase system. HtrA degraded efficiently the unfolded, reduced alkaline phosphatase at 20 °C, both and . The cleavage was most efficient in the case of HtrA deprived of its internal S–S bond; therefore we expect that the reduction of HtrA may play a regulatory role in proteolysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020487-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3649.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020487-0&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Kamitani S., Kusukawa N., Ito K. 1992; In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA ( ppfA) gene product. J Biol Chem 267:22440–22445
    [Google Scholar]
  2. Bardwell J. C., McGovern K., Beckwith J. 1991; Identification of a protein required for disulfide bond formation in vivo . Cell 67:581–589
    [Google Scholar]
  3. CastilloKeller M., Misra R. 2003; Protease deficient DegP suppresses lethal effects of a mutant OmpC protein by its capture. J Bacteriol 185:148–157
    [Google Scholar]
  4. Clausen T., Southan C., Ehrmann M. 2002; The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–455
    [Google Scholar]
  5. Dorel C., Lejeune P., Rodrigue A. 2006; The Cpx system of Escherichia coli, a strategic signalling pathway for confronting adverse conditions and for settling biofilm communities?. Res Microbiol 157:306–314
    [Google Scholar]
  6. Hiniker A., Bardwell J. C. A. 2004; In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279:12967–12973
    [Google Scholar]
  7. Iwanczyk J., Damjanovic D., Kooistra J., Leong V., Jomaa A., Ghirlando R., Ortega J. 2007; The role of the PDZ domains in Escherichia coli DegP protein. J Bacteriol 189:3176–3186
    [Google Scholar]
  8. Jakob U., Muse W., Eser M., Bardwell J. C. A. 1999; Chaperone activity with a redox switch. Cell 96:341–352
    [Google Scholar]
  9. Jomaa A., Damianovic D., Leong V., Ghirlando R., Iwanczyk J., Ortega J. 2007; The inner cavity of Escherichia coli DegP protein is not essential for molecular chaperone and proteolytic activity. J Bacteriol 189:706–716
    [Google Scholar]
  10. Jones C. H., Dexter P., Evans A. K., Liu C., Hultgren S. J., Hruby D. E. 2002; Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 184:5762–5771
    [Google Scholar]
  11. Kishigami S., Akiyama Y., Ito K. 1995; Redox states of DsbA in the periplasm of Escherichia coli . FEBS Lett 364:55–58
    [Google Scholar]
  12. Krojer T., Garrido-Franco M., Huber R., Ehrmann M., Clausen T. 2002; Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459
    [Google Scholar]
  13. Krojer T., Sawa J., Schafer E., Saibil H., Ehrmann M., Clausen T. 2008; Structural basis for the regulated protease and chaperone function of DegP. Nature 453:885–890
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  15. Lipinska B., Fayet O., Baird L., Georgopoulos C. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
    [Google Scholar]
  16. Misra R., Castillo Keller M., Deng M. 2000; Overexpression of protease-deficient DegPS210A rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J Bacteriol 182:4882–4888
    [Google Scholar]
  17. Missiakas D., Raina S. 1997; Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways. Trends Biochem Sci 22:59–63
    [Google Scholar]
  18. Munson L., Fall R. R. 1978; Purification and characterization of Escherichia coli alkaline phosphatase. Biochem Educ 3:100–105
    [Google Scholar]
  19. Oberfelder R. 1993; Detection of proteins on filters by enzymatic methods. In Methods in Nonradioactive Detection, pp 83–85 Edited by Howard G. C. Norwalk, CT: Appleton & Lange;
    [Google Scholar]
  20. Raina S., Missiakas D., Georgopoulos C. 1995; The rpoE gene encoding the σ E ( σ 24) heat shock sigma factor of Escherichia coli . EMBO J 14:1043–1055
    [Google Scholar]
  21. Sardesai A. A., Genevaux P., Schwager F., Ang D., Georgopoulos C. 2003; The OmpL porin does not modulate redox potential in the periplasmic space of Escherichia coli . EMBO J 22:1461–1466
    [Google Scholar]
  22. Savageau M. A. 1983; Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122:732–744
    [Google Scholar]
  23. Schlieker C., Bukau B., Mogk A. 2002; Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 96:13–21
    [Google Scholar]
  24. Skorko-Glonek J., Krzewski K., Lipińska B., Bertoli E., Tanfani F. 1995; Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J Biol Chem 270:11140–11146
    [Google Scholar]
  25. Skorko-Glonek J., Lipinska B., Krzewski K., Zolese G., Bertoli E., Tanfani F. 1997; HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J Biol Chem 272:8974–8982
    [Google Scholar]
  26. Skorko-Glonek J., Zurawa D., Kuczwara E., Wozniak M., Wypych Z., Lipinska B. 1999; Escherichia coli heat shock HtrA protease participates in the defense against oxidative stress. Mol Gen Genet 262:342–350
    [Google Scholar]
  27. Skorko-Glonek J., Zurawa D., Tanfani F., Scirè A., Wawrzynów A., Narkiewicz J., Bertoli E., Lipinska B. 2003; The N-terminal region of HtrA heat shock protease from Escherichia coli is essential for stabilization of HtrA primary structure and maintaining of its oligomeric structure. Biochim Biophys Acta 1649171–182
    [Google Scholar]
  28. Skorko-Glonek J., Sobiecka-Szkatula A., Lipinska B. 2006; Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli . Acta Biochim Pol 53:585–589
    [Google Scholar]
  29. Souza V., Castillo A., Eguiarte L. 2002; The evolutionary ecology of Escherichia coli . Am Sci 90:332–341
    [Google Scholar]
  30. Spiess C., Beil A., Ehrmann M. 1999; A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347
    [Google Scholar]
  31. Wickner S., Maurizi M. R., Gottesman S. 1999; Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020487-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020487-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error