1887

Abstract

Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high-light stress require activation by the orphan response regulator NblR, a member of the OmpR/PhoB family. Although NblR contains a putative phosphorylatable residue (Asp57), it lacks other conserved residues required to chelate the Mg necessary for aspartic acid phosphorylation or to transduce the phosphorylation signal. In close agreement with these features, NblR was not phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate and mutation of Asp57 to Ala had no impact on previously characterized NblR functions in . On the other hand, and assays show that the default state of NblR is monomeric, suggesting that, despite input differences, NblR activation could involve the same general mechanism of activation by dimerization present in known members of the OmpR/PhoB family. Structural and functional data indicate that the receiver domain of NblR shares similarities with other phosphorylation-independent response regulators such as FrzS and HP1043. To acknowledge the peculiarities of these atypical ‘two-component’ regulators with phosphorylation-independent signal transduction mechanisms, we propose the term PIARR, standing for phosphorylation-independent activation of response regulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020677-0
2008-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3002.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020677-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. J., Smith J. A., Struhl K. (editors) 1999 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bachhawat P., Swapna G. V., Montelione G. T., Stock A. M. 2005; Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13:1353–1363
    [Google Scholar]
  3. Bartel P., Chien C. T., Sternglanz R., Fields S. 1993; Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14:920–924
    [Google Scholar]
  4. Brunger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M. other authors 1998; Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921
    [Google Scholar]
  5. Burillo S. 2006 Identificación y caracterización de componentes celulares implicados en transducción de señales en Synechococcus sp. PCC 7942. PhD thesis Universidad de Alicante; Spain:
    [Google Scholar]
  6. Burillo S., Luque I., Fuentes I., Contreras A. 2004; Interactions between the nitrogen signal transduction protein PII and N-acetylglutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186:3346–3354
    [Google Scholar]
  7. Casino P., Fernandez-Alvarez A., Alfonso C., Rivas G., Marina A. 2007; Identification of a novel two component system in Thermotoga maritima. Complex stoichiometry and crystallization. Biochim Biophys Acta 1774603–609
    [Google Scholar]
  8. Collaborative Computational Project, Number 4 1994; The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763
    [Google Scholar]
  9. Collier J. L., Grossman A. R. 1992; Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174:4718–4726
    [Google Scholar]
  10. Collier J. L., Grossman A. R. 1994; A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:1039–1047
    [Google Scholar]
  11. Dyer C. M., Dahlquist F. W. 2006; Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J Bacteriol 188:7354–7363
    [Google Scholar]
  12. Espinosa J., Fuentes I., Burillo S., Rodriguez-Mateos F., Contreras A. 2006; SipA, a novel type of protein from Synechococcus sp. PCC 7942, binds to the kinase domain of NblS. FEMS Microbiol Lett 254:41–47
    [Google Scholar]
  13. Espinosa J., Forchhammer K., Contreras A. 2007; Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153:711–718
    [Google Scholar]
  14. Fields S., Song O. 1989; A novel genetic system to detect protein-protein interactions. Nature 340:245–246
    [Google Scholar]
  15. Fraser J. S., Merlie J. P. Jr, Echols N., Weisfield S. R., Mignot T., Wemmer D. E., Zusman D. R., Alber T. 2007; An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS. Mol Microbiol 65:319–332
    [Google Scholar]
  16. Gao R., Mack T. R., Stock A. M. 2007; Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234
    [Google Scholar]
  17. Golden S. S., Sherman L. A. 1984; Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol 158:36–42
    [Google Scholar]
  18. Grossman A. R., Schaefer M. R., Chiang G. G., Collier J. L. 1993; The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749
    [Google Scholar]
  19. Grossman A. R., Bhaya D., He Q. 2001; Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452
    [Google Scholar]
  20. Hanahan D. 1985; Techniques for transformation of Escherichia coli . In DNA Cloning pp 109–135 Edited by Glover D. M. Oxford, UK: IRL Press;
    [Google Scholar]
  21. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. 1993; The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816
    [Google Scholar]
  22. Hubbard J. A., MacLachlan L. K., King G. W., Jones J. J., Fosberry A. P. 2003; Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli . Mol Microbiol 49:1191–1200
    [Google Scholar]
  23. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
    [Google Scholar]
  24. Jeon Y., Lee Y. S., Han J. S., Kim J. B., Hwang D. S. 2001; Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem 276:40873–40879
    [Google Scholar]
  25. Kappell A. D., Bhaya D., van Waasbergen L. G. 2006; Negative control of the high light-inducible hliA gene and implications for the activities of the NblS sensor kinase in the cyanobacterium Synechococcus elongatus strain PCC 7942. Arch Microbiol 186:403–413
    [Google Scholar]
  26. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756
    [Google Scholar]
  27. Karimova G., Dautin N., Ladant D. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243
    [Google Scholar]
  28. Kato H., Chibazakura T., Yoshikawa H. 2008; NblR is a novel one-component response regulator in the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 72:1072–1079
    [Google Scholar]
  29. Kopp J., Schwede T. 2004; The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 32:D230–D234
    [Google Scholar]
  30. Lee G. F., Lebert M. R., Lilly A. A., Hazelbauer G. L. 1995; Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo . Proc Natl Acad Sci U S A 92:3391–3395
    [Google Scholar]
  31. Lee S. Y., Cho H. S., Pelton J. G., Yan D., Berry E. A., Wemmer D. E. 2001; Crystal structure of activated CheY. Comparison with other activated receiver domains. J Biol Chem 276:16425–16431
    [Google Scholar]
  32. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P. 2006; SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260
    [Google Scholar]
  33. Lewis R. J., Brannigan J. A., Muchova K., Barak I., Wilkinson A. J. 1999; Phosphorylated aspartate in the structure of a response regulator protein. J Mol Biol 294:9–15
    [Google Scholar]
  34. Luque I., Zabulon G., Contreras A., Houmard J. 2001; Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41:937–947
    [Google Scholar]
  35. Martinez-Argudo I., Martin-Nieto J., Salinas P., Maldonado R., Drummond M., Contreras A. 2001; Two-hybrid analysis of domain interactions involving NtrB and NtrC two-component regulators. Mol Microbiol 40:169–178
    [Google Scholar]
  36. Martinez-Argudo I., Salinas P., Maldonado R., Contreras A. 2002; Domain interactions on the ntr signal transduction pathway: two-hybrid analysis of mutant and truncated derivatives of histidine kinase NtrB. J Bacteriol 184:200–206
    [Google Scholar]
  37. McCleary W. R., Stock J. B. 1994; Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269:31567–31572
    [Google Scholar]
  38. Millson S. H., Truman A. W., Piper P. W. 2003; Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. Biotechniques 35:60–64
    [Google Scholar]
  39. Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. 1992; Stereochemical quality of protein structure coordinates. Proteins 12:345–364
    [Google Scholar]
  40. Myers J., Graham J. R., Wang R. T. 1980; Light harvesting in Anacystis nidulans studied in pigment mutants. Plant Physiol 66:1144–1149
    [Google Scholar]
  41. Ohta N., Newton A. 2003; The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J Bacteriol 185:4424–4431
    [Google Scholar]
  42. Pieper U., Eswar N., Braberg H., Madhusudhan M. S., Davis F. P., Stuart A. C., Mirkovic N., Rossi A., Marti-Renom M. A. other authors 2004; MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 32:D217–D222
    [Google Scholar]
  43. Roder K. H., Wolf S. S., Schweizer M. 1996; Refinement of vectors for use in the yeast two-hybrid system. Anal Biochem 241:260–262
    [Google Scholar]
  44. Rubio L. M., Herrero A., Flores E. 1996; A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol Biol 30:845–850
    [Google Scholar]
  45. Salinas P., Ruiz D., Cantos R., Lopez-Redondo M. L., Marina A., Contreras A. 2007; The regulatory factor SipA provides a link between NblS and NblR signal transduction pathways in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 66:1607–1619
    [Google Scholar]
  46. Schar J., Sickmann A., Beier D. 2005; Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori . J Bacteriol 187:3100–3109
    [Google Scholar]
  47. Schwarz R., Grossman A. R. 1998; A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci U S A 95:11008–11013
    [Google Scholar]
  48. Sendersky E., Lahmi R., Shaltiel J., Perelman A., Schwarz R. 2005; NblC, a novel component required for pigment degradation during starvation in Synechococcus PCC 7942. Mol Microbiol 58:659–668
    [Google Scholar]
  49. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215
    [Google Scholar]
  50. Studier F. W. 2005; Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234
    [Google Scholar]
  51. Toro-Roman A., Mack T. R., Stock A. M. 2005; Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the α4- β5- α5 face. J Mol Biol 349:11–26
    [Google Scholar]
  52. van Waasbergen L. G., Dolganov N., Grossman A. R. 2002; nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol 184:2481–2490
    [Google Scholar]
  53. Williams S. B., Vakonakis I., Golden S. S., LiWang A. C. 2002; Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci U S A 99:15357–15362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020677-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020677-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error