1887

Abstract

In the present work the metabolic response of to deletion of the global transcriptional regulator McbR, which controls, e.g. the expression of enzymes of -methionine and -cysteine biosynthesis and sulfur assimilation, was studied. Several oxidative stress proteins were significantly upregulated among about 40 proteins in response to deletion of McbR. Linked to this oxidative stress, the mutant exhibited a 50 % reduced growth rate, a 30 % reduced glucose uptake rate and a 30 % reduced biomass yield. It also showed metabolic flux rerouting in response to the deletion. NADPH metabolism was strongly altered. In contrast to the wild-type, the deletion strain supplied significantly more NADPH than required for anabolism, indicating the activity of additional NADPH-consuming reactions. These involved enzymes of oxidative stress protection. Through redirection of metabolic carbon flux in the central catabolism, including a 40 % increased tricarboxylic acid (TCA) cycle flux, the mutant revealed an enhanced NADPH supply to provide redox power for the antioxidant systems. This, however, was not sufficient to compensate for the oxidative stress, as indicated by the drastically disturbed redox equilibrium. The NADPH/NADP ratio in Δ was only 0.29, and thus much lower than that of the wild-type (2.35). Similarly, the NADH/NAD ratio was substantially reduced from 0.18 in the wild-type to 0.08 in the mutant. Deletion of McbR is regarded as a key step towards biotechnological -methionine overproduction in . Δ, however, did not overproduce -methionine; this was very likely linked to the low availability of NADPH. Since oxidative stress is often observed in industrial production processes, engineering of NADPH metabolism could be a general strategy for improvement of production strains. Unlike the wild-type, Δ contained large granules with high phosphorus content. The storage of these energy-rich polyphosphates is probably the result of a large excess of formation of ATP, as revealed by estimation of the underlying fluxes linked to energy metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021204-0
2008-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3917.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021204-0&mimeType=html&fmt=ahah

References

  1. Bai Z., Harvey L. M., McNeil B. 2003; Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302
    [Google Scholar]
  2. Baker D. H., Boebel K. P. 1980; Utilization of the d- and l-isomers of methionine and methionine hydroxy analogue as determined by chick bioassay. J Nutr 110:959–964
    [Google Scholar]
  3. Becker J., Klopprogge C., Herold A., Zelder O., Bolten C. J., Wittmann C. 2007; Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum – over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109
    [Google Scholar]
  4. Bernofsky C., Swan M. 1973; An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53:452–458
    [Google Scholar]
  5. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99
    [Google Scholar]
  6. Boada J., Roig T., Perez X., Gamez A., Bartrons R., Cascante M., Bermudez J. 2000; Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett 480:261–264
    [Google Scholar]
  7. Bolten C. J., Kiefer P., Letisse F., Portais J. C., Wittmann C. 2007; Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849
    [Google Scholar]
  8. Brumaghim J. L., Li Y., Henle E., Linn S. 2003; Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504
    [Google Scholar]
  9. de Hollander J. A. 1994; Potential metabolic limitations in lysine production by Corynebacterium glutamicum as revealed by metabolic network analysis. Appl Microbiol Biotechnol 42:508–515
    [Google Scholar]
  10. D'Mello J. P. F., Lewis D. 1978; Effect of Nutrient Deficiencies in Animals: Amino Acids . pp 441–490 Edited by Rechgigl M. CRC Handbook Series in Nutrition and Food Boca Raton, FL: CRC Press;
    [Google Scholar]
  11. Eggeling L., Sahm H. 1999; l-Glutamate and l-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52:146–153
    [Google Scholar]
  12. Friedman M. 1999; Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479
    [Google Scholar]
  13. Haitani Y., Awano N., Yamazaki M., Wada M., Nakamori S., Takagi H. 2006; Functional analysis of l-serine O-acetyltransferase from Corynebacterium glutamicum . FEMS Microbiol Lett 255:156–163
    [Google Scholar]
  14. Hermann T., Pfefferle W., Baumann C., Busker E., Schaffer S., Bott M., Sahm H., Dusch N., Kalinowski J. other authors 2001; Proteome analysis of Corynebacterium glutamicum . Electrophoresis 22:1712–1723
    [Google Scholar]
  15. Hwang B. J., Kim Y., Kim H. B., Hwang H. J., Kim J. H., Lee H. S. 1999; Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine γ-synthase. Mol Cells 9:300–308
    [Google Scholar]
  16. Hwang B. J., Yeom H. J., Kim Y., Lee H. S. 2002; Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184:1277–1286
    [Google Scholar]
  17. Igoillo-Esteve M., Maugeri D., Stern A. L., Beluardi P., Cazzulo J. J. 2007; The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. An Acad Bras Cienc 79:649–663
    [Google Scholar]
  18. Iuchi S., Weiner L. 1996; Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem 120:1055–1063
    [Google Scholar]
  19. Kiefer P., Heinzle E., Zelder O., Wittmann C. 2004; Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239
    [Google Scholar]
  20. Kim J. W., Kim H. J., Kim Y., Lee M. S., Lee H. S. 2001; Properties of the Corynebacterium glutamicum metC gene encoding cystathionine β-lyase. Mol Cells 11:220–225
    [Google Scholar]
  21. Krömer J. O., Sorgenfrei O., Klopprogge K., Heinzle E., Wittmann C. 2004; In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784
    [Google Scholar]
  22. Krömer J. O., Fritz M., Heinzle E., Wittmann C. 2005; In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum . Anal Biochem 340:171–173
    [Google Scholar]
  23. Krömer J. O., Heinzle E., Schröder H., Wittmann C. 2006a; Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188:609–618
    [Google Scholar]
  24. Krömer J. O., Heinzle E., Wittmann C. 2006b; Quantification of S-adenosyl methionine in microbial cell extracts. Biotechnol Lett 28:69–71
    [Google Scholar]
  25. Lee H. S., Hwang B. J. 2003; Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467
    [Google Scholar]
  26. Messner K. R., Imlay J. A. 1999; The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem 274:10119–10128
    [Google Scholar]
  27. Moritz B., Striegel K., De Graaf A. A., Sahm H. 2000; Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo . Eur J Biochem 267:3442–3452
    [Google Scholar]
  28. Nogae I., Johnston M. 1990; Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96:161–169
    [Google Scholar]
  29. Pallerla S. R., Knebel S., Polen T., Klauth P., Hollender J., Wendisch V. F., Schoberth S. M. 2005; Formation of volutin granules in Corynebacterium glutamicum . FEMS Microbiol Lett 243:133–140
    [Google Scholar]
  30. Park S. D., Lee J. Y., Kim Y., Kim J. H., Lee H. S. 1998; Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum . Mol Cells 8:286–294
    [Google Scholar]
  31. Perkins D. N., Pappin D. J., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567
    [Google Scholar]
  32. Pollak N., Dolle C., Ziegler M. 2007; The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem J 402:205–218
    [Google Scholar]
  33. Popov N., Schmitt M., Schulzeck S., Matthies H. 1975; Reliable micromethod for determination of the protein content in tissue homogenates. Acta Biol Med Ger 34:1441–1446
    [Google Scholar]
  34. Ralser M., Wamelink M. M., Kowald A., Gerisch B., Heeren G., Struys E. A., Klipp E., Jakobs C., Breitenbach M. other authors 2007; Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10
    [Google Scholar]
  35. Rey D. A., Pühler A., Kalinowski J. 2003; The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum . J Biotechnol 103:51–65
    [Google Scholar]
  36. Rey D. A., Nentwich S. S., Koch D. J., Rückert C., Pühler A., Tauch A., Kalinowski J. 2005; The McbR repressor modulated by the effector substance S-adenosyl homocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887
    [Google Scholar]
  37. Rückert C., Pühler A., Kalinowski J. 2003; Genome-wide analysis of the l-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228
    [Google Scholar]
  38. Rückert C., Koch D. J., Rey D. A., Albersmeier A., Mormann S., Pühler A., Kalinowski J. 2005; Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2- cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121
    [Google Scholar]
  39. Streker K., Freiberg C., Labischinski H., Hacker J., Ohlsen K. 2005; Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol 187:2249–2256
    [Google Scholar]
  40. Varela C., Agosin E., Baez M., Klapa M., Stephanopoulos G. 2003; Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555
    [Google Scholar]
  41. Varela C. A., Baez M. E., Agosin E. 2004; Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum . Appl Environ Microbiol 70:4222–4229
    [Google Scholar]
  42. Williams A. C., Ford W. C. 2004; Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod 71:1309–1316
    [Google Scholar]
  43. Willis L. B., Lessard P. A., Sinskey A. J. 2005; Synthesis of l-threonine and branched-chain amino acids. In Handbook of Corynebacterium glutamicum pp 511–531 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press, Taylor and Francis;
    [Google Scholar]
  44. Wittmann C., Becker J. 2007; The l-lysine story: from metabolic pathways to industrial production. In Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering (Microbiology Monographs volume 5) pp 39–70 Edited by Wendisch V. F. Berlin/Heidelberg: Springer;
    [Google Scholar]
  45. Wittmann C., de Graaf A. 2005; Metabolic flux analysis in Corynebacterium glutamicum . In Handbook of Corynebacterium glutamicum pp 277–304 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  46. Wittmann C., Heinzle E. 2001; Modeling and experimental design for metabolic flux analysis of lysine-producing corynebacteria by mass spectrometry. Metab Eng 3:173–191
    [Google Scholar]
  47. Wittmann C., Heinzle E. 2002; Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859
    [Google Scholar]
  48. Wittmann C., Kiefer P., Zelder O. 2004a; Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287
    [Google Scholar]
  49. Wittmann C., Kim H. M., Heinzle E. 2004b; Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87:1–6
    [Google Scholar]
  50. Wittmann C., Krömer J. O., Kiefer P., Binz T., Heinzle E. 2004c; Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139
    [Google Scholar]
  51. Yang T. H., Wittmann C., Heinzle E. 2006; Respirometric 13C-flux analysis. Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum . Metab Eng 8:432–446
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021204-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021204-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error