1887

Abstract

The complete genome sequence of , a bacterial pathogen commonly associated with human dental caries, was published in 2002. The streamlined genome (2.03 Mb) revealed an organism that is well adapted to its obligately host-associated existence in multispecies biofilms on tooth surfaces: a dynamic environment that undergoes rapid and substantial fluctuations. However, lacks many of the sensing systems and alternative sigma factors that bacteria often use to coordinate gene expression in response to stress and changes in their environment. Over the past 7 years, functional genomics and proteomics have enhanced our understanding of how has integrated the stress regulon and global transcriptional regulators to coordinate responses to environmental fluctuations with modulation of virulence in a way that ensures persistence in the oral cavity and capitalizes on conditions that are favourable for the development of dental caries. Here, we highlight advances in dissection of the stress regulon of and its intimate interrelationship with pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/023770-0
2008-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3247.html?itemId=/content/journal/micro/10.1099/mic.0.2008/023770-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A. 2006; Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol 188:3748–3756
    [Google Scholar]
  2. Abranches J., Nascimento M. M., Zeng L., Browngardt C. M., Wen Z. T., Rivera M. F., Burne R. A. 2008; CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans . J Bacteriol 190:2340–2349
    [Google Scholar]
  3. Agha-Hosseini F., Dizgah I. M., Amirkhani S. 2006; The composition of unstimulated whole saliva of healthy dental students. J Contemp Dent Pract 7:104–111
    [Google Scholar]
  4. Ahn S. J., Lemos J. A., Burne R. A. 2005; Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol 187:3028–3038
    [Google Scholar]
  5. Ahn S. J., Wen Z. T., Burne R. A. 2006; Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun 74:1631–1642
    [Google Scholar]
  6. Ahn S. J., Wen Z. T., Burne R. A. 2007; Effects of oxygen on virulence traits of Streptococcus mutans . J Bacteriol 189:8519–8527
    [Google Scholar]
  7. Ajdic D., Pham V. T. 2007; Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 189:5049–5059
    [Google Scholar]
  8. Ajdic D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439
    [Google Scholar]
  9. Arirachakaran P., Benjavongkulchai E., Luengpailin S., Ajdic D., Banas J. A. 2007; Manganese affects Streptococcus mutans virulence gene expression. Caries Res 41:503–511
    [Google Scholar]
  10. Bender G. R., Sutton S. V., Marquis R. E. 1986; Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53:331–338
    [Google Scholar]
  11. Biswas S., Biswas I. 2005; Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans . Infect Immun 73:6923–6934
    [Google Scholar]
  12. Biswas S., Biswas I. 2006; Regulation of the glucosyltransferase ( gtfBC) operon by CovR in Streptococcus mutans . J Bacteriol 188:988–998
    [Google Scholar]
  13. Biswas I., Drake L., Biswas S. 2007; Regulation of gbpC expression in Streptococcus mutans . J Bacteriol 189:6521–6531
    [Google Scholar]
  14. Biswas I., Drake L., Erkina D., Biswas S. 2008; Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans . J Bacteriol 190:68–77
    [Google Scholar]
  15. Burne R. A., Marquis R. E. 2000; Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6
    [Google Scholar]
  16. Chen P. M., Chen H. C., Ho C. T., Jung C. J., Lien H. T., Chen J. Y., Chia J. S. 2008; The two-component system ScnRK of Streptococcus mutans affects hydrogen peroxide resistance and murine macrophage killing. Microbes Infect 10:293–301
    [Google Scholar]
  17. Chong P., Drake L., Biswas I. 2008; Modulation of covR expression in Streptococcus mutans UA159. J Bacteriol 190:4478–4488
    [Google Scholar]
  18. Deng D. M., Liu M. J., ten Cate J. M., Crielaard W. 2007a; The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res 86:606–610
    [Google Scholar]
  19. Deng D. M., ten Cate J. M., Crielaard W. 2007b; The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur J Oral Sci 115:363–370
    [Google Scholar]
  20. Dunning D. W., McCall L. W., Powell W. F. Jr, Arscott W. T., McConocha E. M., McClurg C. J., Goodman S. D., Spatafora G. A. 2008; SloR modulation of the Streptococcus mutans acid tolerance response involves the GcrR response regulator as an essential intermediary. Microbiology 154:1132–1143
    [Google Scholar]
  21. Faustoferri R. C., Hahn K., Weiss K., Quivey R. G. Jr 2005; Smx nuclease is the major, low-pH-inducible apurinic/apyrimidinic endonuclease in Streptococcus mutans . J Bacteriol 187:2705–2714
    [Google Scholar]
  22. Fozo E. M., Quivey R. G. Jr 2004a; The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158
    [Google Scholar]
  23. Fozo E. M., Quivey R. G. Jr 2004b; Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929–936
    [Google Scholar]
  24. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr 2007; Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . Infect Immun 75:1537–1539
    [Google Scholar]
  25. Graham M. R., Smoot L. M., Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M. 2002; Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860
    [Google Scholar]
  26. Griswold A. R., Jameson-Lee M., Burne R. A. 2006; Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 188:834–841
    [Google Scholar]
  27. Hahn K., Faustoferri R. C., Quivey R. G. Jr 1999; Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 31:1489–1498
    [Google Scholar]
  28. Hanna M. N., Ferguson R. J., Li Y. H., Cvitkovitch D. G. 2001; uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans . J Bacteriol 183:5964–5973
    [Google Scholar]
  29. Hasona A., Crowley P. J., Levesque C. M., Mair R. W., Cvitkovitch D. G., Bleiweis A. S., Brady L. J. 2005; Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci U S A 102:17466–17471
    [Google Scholar]
  30. Hasona A., Zuobi-Hasona K., Crowley P. J., Abranches J., Ruelf M. A., Bleiweis A. S., Brady L. J. 2007; Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol 189:1219–1230
    [Google Scholar]
  31. He X., Wu C., Yarbrough D., Sim L., Niu G., Merritt J., Shi W., Qi F. 2008; The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 70:112–126
    [Google Scholar]
  32. Kreth J., Merritt J., Shi W., Qi F. 2005; Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404
    [Google Scholar]
  33. Kreth J., Merritt J., Zhu L., Shi W., Qi F. 2006; Cell density- and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans . FEMS Microbiol Lett 265:11–17
    [Google Scholar]
  34. Kreth J., Hung D. C., Merritt J., Perry J., Zhu L., Goodman S. D., Cvitkovitch D. G., Shi W., Qi F. 2007; The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology 153:1799–1807
    [Google Scholar]
  35. Lemos J. A., Burne R. A. 2002; Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans . J Bacteriol 184:6357–6366
    [Google Scholar]
  36. Lemos J. A., Brown T. A. Jr, Burne R. A. 2004; Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun 72:1431–1440
    [Google Scholar]
  37. Lemos J. A., Abranches J., Burne R. A. 2005; Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7:95–107
    [Google Scholar]
  38. Lemos J. A., Lin V. K., Nascimento M. M., Abranches J., Burne R. A. 2007a; Three gene products govern (p)ppGpp production by Streptococcus mutans . Mol Microbiol 65:1568–1581
    [Google Scholar]
  39. Lemos J. A., Luzardo Y., Burne R. A. 2007b; Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans . J Bacteriol 189:1582–1588
    [Google Scholar]
  40. Lemos J. A., Nascimento M. M., Lin V. K., Abranches J., Burne R. A. 2008; Global regulation by (p)ppGpp and CodY in Streptococcus mutans . J Bacteriol 190:5291–5299
    [Google Scholar]
  41. Len A. C., Harty D. W., Jacques N. A. 2004a; Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150:1339–1351
    [Google Scholar]
  42. Len A. C., Harty D. W., Jacques N. A. 2004b; Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366
    [Google Scholar]
  43. Levesque C. M., Mair R. W., Perry J. A., Lau P. C., Li Y. H., Cvitkovitch D. G. 2007; Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties. Lett Appl Microbiol 45:398–404
    [Google Scholar]
  44. Li Y. H., Hanna M. N., Svensater G., Ellen R. P., Cvitkovitch D. G. 2001a; Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884
    [Google Scholar]
  45. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2001b; Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908
    [Google Scholar]
  46. Li Y. H., Lau P. C., Tang N., Svensater G., Ellen R. P., Cvitkovitch D. G. 2002a; Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans . J Bacteriol 184:6333–6342
    [Google Scholar]
  47. Li Y. H., Tang N., Aspiras M. B., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2002b; A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708
    [Google Scholar]
  48. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  49. Matsushita M., Janda K. D. 2002; Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 10:855–867
    [Google Scholar]
  50. Merritt J., Kreth J., Shi W., Qi F. 2005; LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57:960–969
    [Google Scholar]
  51. Nascimento M. M., Lemos J. A., Abranches J., Lin V. K., Burne R. A. 2008; Role of RelA of Streptococcus mutans in global control of gene expression. J Bacteriol 190:28–36
    [Google Scholar]
  52. Petersen F. C., Tao L., Scheie A. A. 2005; DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol 187:4392–4400
    [Google Scholar]
  53. Qi F., Merritt J., Lux R., Shi W. 2004; Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899
    [Google Scholar]
  54. Qi F., Kreth J., Levesque C. M., Kay O., Mair R. W., Shi W., Cvitkovitch D. G., Goodman S. D. 2005; Peptide pheromone induced cell death of Streptococcus mutans . FEMS Microbiol Lett 251:321–326
    [Google Scholar]
  55. Quivey R. G. Jr, Faustoferri R. C., Clancy K. A., Marquis R. E. 1995; Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett 126:257–261
    [Google Scholar]
  56. Rathsam C., Eaton R. E., Simpson C. L., Browne G. V., Berg T., Harty D. W., Jacques N. A. 2005a; Up-regulation of competence- but not stress-responsive proteins accompanies an altered metabolic phenotype in Streptococcus mutans biofilms. Microbiology 151:1823–1837
    [Google Scholar]
  57. Rathsam C., Eaton R. E., Simpson C. L., Browne G. V., Valova V. A., Harty D. W., Jacques N. A. 2005b; Two-dimensional fluorescence difference gel electrophoretic analysis of Streptococcus mutans biofilms. J Proteome Res 4:2161–2173
    [Google Scholar]
  58. Rolerson E., Swick A., Newlon L., Palmer C., Pan Y., Keeshan B., Spatafora G. 2006; The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol 188:5033–5044
    [Google Scholar]
  59. Senadheera M. D., Guggenheim B., Spatafora G. A., Huang Y. C., Choi J., Hung D. C., Treglown J. S., Goodman S. D., Ellen R. P., Cvitkovitch D. G. 2005; A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064–4076
    [Google Scholar]
  60. Shelburne S. A. III, Sumby P., Sitkiewicz I., Granville C., DeLeo F. R., Musser J. M. 2005; Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc Natl Acad Sci U S A 102:16037–16042
    [Google Scholar]
  61. Shemesh M., Tam A., Steinberg D. 2007; Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153:1307–1317
    [Google Scholar]
  62. Sheng J., Marquis R. E. 2006; Enhanced acid resistance of oral streptococci at lethal pH values associated with acid-tolerant catabolism and with ATP synthase activity. FEMS Microbiol Lett 262:93–98
    [Google Scholar]
  63. Sheng J., Marquis R. E. 2007; Malolactic fermentation by Streptococcus mutans . FEMS Microbiol Lett 272:196–201
    [Google Scholar]
  64. Spoering A. L., Gilmore M. S. 2006; Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133–137
    [Google Scholar]
  65. Sztajer H., Lemme A., Vilchez R., Schulz S., Geffers R., Yip C. Y., Levesque C. M., Cvitkovitch D. G., Wagner-Dobler I. 2008; Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J Bacteriol 190:401–415
    [Google Scholar]
  66. Welin J., Wilkins J. C., Beighton D., Wrzesinski K., Fey S. J., Mose-Larsen P., Hamilton I. R., Svensater G. 2003; Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans . FEMS Microbiol Lett 227:287–293
    [Google Scholar]
  67. Welin J., Wilkins J. C., Beighton D., Svensater G. 2004; Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl Environ Microbiol 70:3736–3741
    [Google Scholar]
  68. Wen Z. T., Suntharaligham P., Cvitkovitch D. G., Burne R. A. 2005; Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73:219–225
    [Google Scholar]
  69. Wen Z. T., Baker H. V., Burne R. A. 2006; Influence of BrpA on critical virulence attributes of Streptococcus mutans . J Bacteriol 188:2983–2992
    [Google Scholar]
  70. Wilkins J. C., Homer K. A., Beighton D. 2002; Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390
    [Google Scholar]
  71. Wilkins J. C., Beighton D., Homer K. A. 2003; Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis . Appl Environ Microbiol 69:5290–5296
    [Google Scholar]
  72. Zeng L., Wen Z. T., Burne R. A. 2006; A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans . Mol Microbiol 62:187–200
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/023770-0
Loading
/content/journal/micro/10.1099/mic.0.2008/023770-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error