1887

Abstract

In this manuscript, the authors have sought to gain a better understanding of the interactions between and lactic acid bacteria (LAB) isolated from Rogossa MRS agar along the digestive tract of grain- and forage-fed cattle. from cattle receiving a high-grain diet were more numerous (<0·05) than from the high-forage diet and the highest numbers were in the faeces. Isolates on Rogossa MRS agar were always greater in the high-grain diet (<0·05) and contained a significant number of LAB. A random set of Rogossa MRS agar colonies was selected and artificial neural networks were used to develop a relationship between colony description and species which was validated using sequence analysis (16S rDNA). The neural networks correctly predicted species in more than 80 % of cases and was composed, primarily, of , , , , and . In conjunction with statistical diversity indices, it was demonstrated that diversity in the high-fibre diet was always lower and was a consequence of the dominance of . In contrast, the diversity in the high-grain diet was greater (<0·05) and was a consequence of the decline in . These data demonstrate that there is a positive relationship between coliform and LAB isolates throughout the digestive tract of cattle, and diet is the major factor regulating bacterial composition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25685-0
2003-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_7.html?itemId=/content/journal/micro/10.1099/mic.0.25685-0&mimeType=html&fmt=ahah

References

  1. Anonymous 2001; Draft risk assessment of the public health impact of Escherichia coli O157 : H7 in ground beef.
  2. Blackburn N, Hagström , Wikner J, Cuadros-Hansson R., Bjørnsen P. K. 1998; Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64:3246–3255
    [Google Scholar]
  3. Boehm M. J, Madden L. V., Hoitink H. A. J. 1993; Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to pythium damping-off severity. Appl Environ Microbiol 59:4171–4179
    [Google Scholar]
  4. Bollet C., de Micco P. 1992; Taxonomic methods. In Encyclopaedia of Microbiology, pp 179–200 Edited by Lederberg J. New York: Academic Press;
    [Google Scholar]
  5. Brown M. S, Krehbiel C. R, Galyean M. L, Remmenga M. D, Peters J. P, Hibbard B, Robinson J., Moseley W. M. 2000; Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles of beef steers. J Anim Sci 78:3155–3168
    [Google Scholar]
  6. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  7. Callaway T. R, Anderson R. C, Anderson T. J, Poole T. L, Bischoff K. M, Kubena L. F., Nisbet D. J. 2001; Escherichia coli O157 : H7 becomes resistant to sodium chlorate in pure culture, but not in mixed culture or in vivo . J Appl Microbiol 91:427–434
    [Google Scholar]
  8. Callaway T. R, Anderson R. C, Genovese K. J, Poole T. L, Anderson T. J, Byrd J. A, Kubena L. F., Nisbet D. J. 2002; Sodium chlorate supplementation reduces E. coli O157 : H7 populations in cattle. J Anim Sci 80:1683–1689
    [Google Scholar]
  9. Cray W. C, Casey T. A, Bosworth B. T., Rasmussen M. A. 1998; Effect of dietary stress on fecal shedding of Escherichia coli O157 : H7 in calves. Appl Environ Microbiol 64:1975–1979
    [Google Scholar]
  10. Dehority B. A., Orpin C. G. 1988; Development of, and natural fluctuations in, rumen microbial populations. In The Rumen and its Microbes pp 151–183 Edited by Hobson P. N. New York: Elsevier;
    [Google Scholar]
  11. Diez-Gonzalez F, Calloway T. R, Kizoulis M. G., Russell J. B. 1998; Grain feeding and dissemination of acid-resistant Escherichia coli from cattle. Science 281:1666–1668
    [Google Scholar]
  12. Elder R. O, Keen J. E, Siragusa G. R, Barkocy-Gallagher G, Koohmaraie M., Laegreid W. W. 2000; Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci U S A 97:2999–3003
    [Google Scholar]
  13. Fegan N., Desmarchelier P. 2002; Comparison between human and animal isolates of Shiga toxin-producing Escherichia coli O157 from Australia. Epidemiol Infect 128:357–362
    [Google Scholar]
  14. Gate J. J, Parker D. S., Lobley G. E. 1999; The metabolic fate of the amido-N group of glutamine in the tissues of the gastrointestinal tract in 24 h-fasted sheep. Br J Nutr 81:297–306
    [Google Scholar]
  15. Gill H. S, Shu Q., Leng R. A. 2000; Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine 18:2541–2548
    [Google Scholar]
  16. Gopal P. K, Prasad J, Smart J., Gill H. S. 2001; In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli . Int J Food Microbiol 67:207–216
    [Google Scholar]
  17. Hancock D. D, Besser T. E, Gill C., Bohach C. H. 1999; Cattle, hay and E. coli . Science 284:51–53
    [Google Scholar]
  18. Harmon B. G, Brown C. A, Tkalcic S, Mueller P. O. E, Parks A, Jain A. V, Zhao T., Doyle M. P. 1999; Fecal shedding and rumen growth of Escherichia coli O157 : H7 in fasted calves. J Food Prot 62:574–579
    [Google Scholar]
  19. Hovde C. J, Austin P. R, Cloud K. A, Williams C. J., Hunt C. W. 1999; Effect of cattle diet on Escherichia coli O157 : H7 acid resistance. Appl Environ Microbiol 65:3233–3235
    [Google Scholar]
  20. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49
    [Google Scholar]
  21. Jordan S. L, Glover J, Malcolm L, Thomson-Carter F. M, Booth I. R., Park S. F. 1999; Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Appl Environ Microbiol 65:1308–1311
    [Google Scholar]
  22. Jordi B. J, Boutaga K, van Heeswijk C. M, van Knapen F., Lipman L. J. 2001; Sensitivity of Shiga toxin-producing Escherichia coli (STEC) strains for colicins under different experimental conditions. FEMS Microbiol Lett 204:329–334
    [Google Scholar]
  23. Keen J. E, Urlich G. A., Elder R. O. 1999; Effects of hay- and grain-based diets on the fecal shedding of naturally-acquired enterohemorrhagic E. coli (EHEC) O157 : H7 in beef feedlot cattle. In Abstracts of the 80th Conference of Research Workers in Animal Diseases, Chicago. Abstract 86 Ames, IA: Iowa State Press;
    [Google Scholar]
  24. Kim J, Nietfeldt J, Ju J, Wise J, Fegan N, Desmarchelier P., Benson A. K. 2001a; Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative Escherichia coli O157. J Bacteriol 183:6885–6897
    [Google Scholar]
  25. Kim S. H, Yang S. J, Koo H. C, Bae W. K, Kim J. Y, Park J. H, Baek Y. J., Park Y. H. 2001b; Inhibitory activity of Bifidobacterium longum HY8001 against Vero cytotoxin of Escherichia coli O157 : H7. J Food Prot 64:1667–1673
    [Google Scholar]
  26. Koch C, Hertwig S, Lurz R, Appel B., Beutin L. 2001; Isolation of a lysogenic bacteriophage carrying the stx(1(OX3)) gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J Clin Microbiol 39:3992–3998
    [Google Scholar]
  27. Krause D. O., McSweeney C. S. 2002; Use of feed supplements to manage generic and pathogenic Escherichia coli in tropical animal production systems. In Proceedings of the International Association for Food Protection pp 148–149 Des Moines, IA: International Association for Food Protection;
    [Google Scholar]
  28. Kudva I. T, Hunt C. W, Williams C. J, Nance U. M., Hovde C. J. 1997; Evaluation of dietary influences of Escherichia coli O157 : H7 shedding by sheep. Appl Environ Microbiol 63:3878–3886
    [Google Scholar]
  29. Kumada K, Koike K., Fujiwara K. 1985; The survival of bacteria under starvation conditions: a mathematical expression of microbial death. J Gen Microbiol 131:2309–2312
    [Google Scholar]
  30. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–176 Edited by Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  31. Latham M. J, Sharpe E., Sutton J. D. 1971; The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J Appl Bacteriol 34:425–434
    [Google Scholar]
  32. Latham M. J, Storry J. E., Sharpe M. E. 1972; Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl Microbiol 24:871–877
    [Google Scholar]
  33. LeJeune J. T, Besser T. E, Merrill N. L, Rice D. H., Hancock D. D. 2001; Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J Dairy Sci 84:1856–1862
    [Google Scholar]
  34. Lema M, Williams L., Rao D. R. 2001; Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157 : H7 in lamb by feeding microbial feed supplement. Small Rumin Res 39:31–39
    [Google Scholar]
  35. Mackie R. I., Gilchrist F. M. C. 1979; Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high concentration diet. Appl Environ Microbiol 38:422–430
    [Google Scholar]
  36. Mackie R. I., Heath S. 1979; Enumeration and isolation of lactate-utilizing bacteria from the rumen of sheep. Appl Environ Microbiol 38:416–421
    [Google Scholar]
  37. Mackie R. I, Gilchrist F. M. C, Robberts A. M, Hannah P. E., Schwartz H. M. 1978; Microbiological and chemical changes in the rumen during stepwise adaptation of sheep to high concentrate diets. J Agric Sci 90:241–254
    [Google Scholar]
  38. Meng J., Doyle M. P. 1997; Emerging issues in microbiological food safety. Annu Rev Nutr 17:255–275
    [Google Scholar]
  39. Midgley J., Desmarchelier P. 2001; Pre-slaughter handling of cattle and Shiga toxin-producing Escherichia coli (STEC. Lett Appl Microbiol 32:307–311
    [Google Scholar]
  40. Midgley J, Fegan N., Desmarchelier P. 1999; Dynamics of Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle. Lett Appl Microbiol 29:85–89
    [Google Scholar]
  41. Naidu A. S, Xie X, Leumer D. A, Harrison S, Burrill M. J., Fonda E. A. 2002; Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro . Curr Microbiol 44:196–205
    [Google Scholar]
  42. Noble P. A, Bidle K. D., Fletcher M. 1997; Natural microbial community composition compared by a back-propagation neural network and cluster analysis of 5S rRNA. Appl Environ Microbiol 63:1762–1770
    [Google Scholar]
  43. Noble P. A, Almeida J. S., Lovell C. R. 2000; Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities. Appl Environ Microbiol 66:694–699
    [Google Scholar]
  44. O'Brien S. J, Murdoch P. S, Riley A. H. 7 other authors 2001; A foodborne outbreak of Vero cytotoxin-producing Escherichia coli O157 : H-phage type 8 in hospital. J Hosp Infect 49:167–172
    [Google Scholar]
  45. Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T., Takeda Y. 2001; Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157 : H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol 68:135–140
    [Google Scholar]
  46. Ohya T, Marubashi T., Ito H. 2000; Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J Vet Med Sci 62:1151–1155
    [Google Scholar]
  47. Rao V. B., Rao H. V. 1993 C++ Neural Networks and Fuzzy Logic. New York: MIS Press;
    [Google Scholar]
  48. Riley M. A., Gordon D. M. 1999; The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133
    [Google Scholar]
  49. Russell J. B., Hino T. 1985; Regulation of lactate production in Streptococcus bovis : a spiraling effect that leads to rumen acidosis. J Dairy Sci 68:1712–1721
    [Google Scholar]
  50. Scott T, Wilson C, Bailey D, Klopfenstein T, Milton T, Moxley R, Smith D, Gray J., Hungerford L. 2000; Influence of diet on total and acid resistant E. coli and colonic pH. In 2000 Nebraska Beef Report pp 39–41 Lincoln, NE: University of Nebraska-Lincoln;
    [Google Scholar]
  51. Slyter L. L. 1976; Influence of acidosis on rumen function. J Anim Sci 43:910–929
    [Google Scholar]
  52. Zhao T, Doyle M. P, Harmon B. G, Brown C. A, Mueller P. O. E., Parks A. H. 1998; Reduction of carriage of enterohemorrhagic Escherichia coli O157 : H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol 36:641–647
    [Google Scholar]
  53. Zust J, Pestevsek U., Vengust A. 2000; Impact of lactic acid fermentation in the large intestine on acute lactic acidosis in cattle. Dtsch Tierarztl Wochenschr 107:359–363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25685-0
Loading
/content/journal/micro/10.1099/mic.0.25685-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error