1887

Abstract

The aerobic respiratory chain of is expressed constitutively even under anaerobic conditions. The membranes of both aerobically and anaerobically grown cells show oxygen consumption activity with NADH as substrate, bovine cytochrome oxidase activity and TMPD oxidase activity. Spectroscopic analysis and haem analysis of membranes of aerobically grown cells show the presence of cytochrome , cytochrome and haem Op1 containing cytochrome oxidase in aerobically and anaerobically grown cells, and haem As containing cytochrome oxidase in aerobically grown cells. The gene clusters of SoxB-type and SoxM-type haem copper oxidase and cytochrome complex have been cloned and sequenced and the regulation of these genes was analysed. The Northern blot analysis indicated that the constitutive transcription of the gene cluster of SoxB-type haem-copper oxidase and cytochrome complex is observed under both aerobic and anaerobic conditions, and the transcription of the operon of SoxM-type haem-copper oxidase was stimulated under aerobic conditions. Furthermore, the presence of the binding residues for CuA in subunit II of both SoxB- and SoxM-type haem-copper oxidase suggests that these haem-copper oxidases are cytochrome oxidases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26000-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149673.html?itemId=/content/journal/micro/10.1099/mic.0.26000-0&mimeType=html&fmt=ahah

References

  1. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen L. A, Iwata S., Wikström M. 2000; The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7:910–917
    [Google Scholar]
  2. Afshar S, Kim C, Monbouquette H. G., Schroder I. 1998; Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum . Appl Environ Microbiol 64:3004–3008
    [Google Scholar]
  3. Afshar S, Johnson E, de Vries S., Schroder I. 2001; Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum . J Bacteriol 183:5491–5495
    [Google Scholar]
  4. Anemüller S., Schäfer G. 1990; Cytochrome aa3 from Sulfolobus acidocaldarius . A single-subunit, quinol-oxidizing archaebacterial terminal oxidase. Eur J Biochem 191:297–305
    [Google Scholar]
  5. Anemüller S, Schmidt C. L, Pacheco I, Schäfer G., Teixeira M. 1994; A cytochrome aa3 -type quinol oxidase from Desulfurolobus ambivalens , the most acidophilic archaeon. FEMS Microbiol Lett 117:275–280
    [Google Scholar]
  6. Balch W. E, Fox G. E, Magrum L. J, Woese R. C., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  7. Bell S. D, Kosa P. L, Sigler P. B., Jackson S. P. 1999; Orientation of the transcription preinitiation complex in Archaea. Proc Natl Acad Sci U S A 96:13662–13667
    [Google Scholar]
  8. Berry E. A., Trumpower B. L. 1987; Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem 161:1–15
    [Google Scholar]
  9. Buggy J., Bauer C. E. 1995; Cloning and characterization of senC , a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus . J Bacteriol 177:6958–6965
    [Google Scholar]
  10. Castresana J, Lübben M, Saraste M., Higgins D. G. 1994; Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 13:2516–2525
    [Google Scholar]
  11. Castresana J, Lübben M., Saraste M. 1995; New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol 250:202–210
    [Google Scholar]
  12. Chepuri V, Lemieux L, Au D. C.-T., Gennis R. B. 1990; The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3 -type family of cytochrome c oxidases. J Biol Chem 265:11185–11192
    [Google Scholar]
  13. Chinenov Y. V. 2000; Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes. J Mol Med 78:239–242
    [Google Scholar]
  14. Eraso J. M., Kaplan S. 1995; Oxygen-insensitive synthesis of photosynthetic membranes of Rhodobacter sphaeroides : a mutant histidine kinase. J Bacteriol 177:2695–2706
    [Google Scholar]
  15. Eraso J. M., Kaplan S. 2000; From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39:2052–2062
    [Google Scholar]
  16. Fee J. A, Yoshida T, Surerus K. K., Mather M. W. 1993; Cytochrome caa3 from the thermophilic bacterium Thermus thermophilus : a member of the heme-copper oxidase superfamily. J Bioenerg Biomembr 25:103–114
    [Google Scholar]
  17. Fischer F, Zillig W, Stetter K. O., Schreiber G. 1983; Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513
    [Google Scholar]
  18. Fitz-Gibbon S, Choi A. J, Miller J. H, Stetter K. O, Simon M. I, Swanson R., Kim U.-J. 1997; A fosmid-based genomic map and identification of 474  genes of the hyperthermophilic archaeon Pyrobaculum aerophilum . Extremophiles 1:36–51
    [Google Scholar]
  19. Fitz-Gibbon S. T, Ladner H, Kim U. J, Stetter K. O, Simon M. I., Miller J. H. 2002; Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum . Proc Natl Acad Sci U S A 99:984–989
    [Google Scholar]
  20. Garcia-Horsman J. A, Barquera B, Rumbley J, Ma J., Gennis R. B. 1994; The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600
    [Google Scholar]
  21. Gelfand M. S, Koonin E. V., Mironov A. A. 2000; Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res 28:695–705
    [Google Scholar]
  22. Gleißner M, Kaiser U, Antonopoulos E., Schäfer G. 1997; The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius . J Biol Chem 272:8417–8426
    [Google Scholar]
  23. Gomes C. M, Lemos R. S, Teixeira M, Kletzin A, Huber H, Stetter K. O, Schäfer G., Anemüller S. 1999; The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. Biochim Biophys Acta 1411134–141
    [Google Scholar]
  24. Gomes C. M, Bandeiras T. M., Teixeira M. 2001; A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens : characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 33:1–8
    [Google Scholar]
  25. Henninger T, Anemüller S, Fitz-Gibbon S, Miller J. H, Schäfer G., Schmidt C. L. 1999; A novel Rieske iron-sulfur protein from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum : sequencing of the gene, expression in E. coli and characterization of the protein. J Bioenerg Biomembr 31:119–128
    [Google Scholar]
  26. Hirokawa T, Boon-Chieng S., Mitaku S. 1998; SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379
    [Google Scholar]
  27. Huber R, Kristjansson J. K., Stetter K. O. 1987; Pyrobaculum gen. nov. a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101
    [Google Scholar]
  28. Huber R, Sacher M, Vollmann A, Huber R., Dieter R. 2000; Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314
    [Google Scholar]
  29. Ishikawa R, Ishido Y, Tachikawa A, Kawasaki H, Matsuzawa H., Wakagi T. 2002; Aeropyrum pernix K1, a strictly aerobic and hyperthermophilic archaeon, has two terminal oxidases, cytochrome ba3 and cytochrome aa3 . Arch Microbiol 179:42–49
    [Google Scholar]
  30. Itoh T, Suzuki K., Nakase T. 1998; Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus . Arch Microbiol 170:155–161
    [Google Scholar]
  31. Iwasaki T, Matsuura K., Oshima T. 1995a; Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. I. The archaeal terminal oxidase supercomplex is a functional fusion of respiratory complexes III and IV with no c -type cytochromes. J Biol Chem 270:30881–30892
    [Google Scholar]
  32. Iwasaki T, Wakagi T, Isogai Y, Iizuka T., Oshima T. 1995b; Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. II. Characterization of the archaeal terminal oxidase supercomplexes and implication for the intermolecular transfer. J Biol Chem 270:30893–30901
    [Google Scholar]
  33. Iwasaki T, Wakagi T., Oshima T. 1995c; Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. III. The archaeal novel respiratory complex II (succinate : caldariella quinone oxidoreductase complex. J Biol Chem 270:30902–30908
    [Google Scholar]
  34. Iwata S, Ostermeier C, Ludwig B., Michel H. 1995; Structure at 2·8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans . Nature 376:660–669
    [Google Scholar]
  35. Janssen S, Schäfer G, Anemüller S., Ralf M. 1997; A succinate dehydrogenase with a novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius : genetic and biophysical characterization. J Bacteriol 179:5560–5569
    [Google Scholar]
  36. Kashefi K., Lovely D. R. 2000; Reduction of Fe(III), Mn(IV), and toxic metals at 100 °C by Pyrobaculum islandicum . J Bacteriol 66:1050–1056
    [Google Scholar]
  37. Kawarabayasi Y, Hino Y, Horikawa H. 27 other authors 1999; Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1 . DNA. Res 6:83–101
    [Google Scholar]
  38. Kawarabayasi Y, Hino Y, Horikawa H. 27 other authors 2001; Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res 8:123–140
    [Google Scholar]
  39. Keightley J. A, Zimmermann B. H, Mather M. W, Springer P, Pastuszyn A, Lawrence D. M., Fee J. A. 1995; Molecular genetic and protein chemical characterization of cytochrome ba3 from Thermus thermophilus HB8. J Biol Chem 270:20345–20358
    [Google Scholar]
  40. Kelly M, Lappalainen P, Talbo G, Haltia T, Van der Oost J., Saraste M. 1993; Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. J Biol Chem 268:16781–16787
    [Google Scholar]
  41. Kihara D, Shimizu T., Kanehisa M. 1998; Prediction of membrane proteins based on classification of transmembrane segments. Protein Eng 11:961–970
    [Google Scholar]
  42. Kita K, Konishi K., Anraku Y. 1984a; Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562–o complex from cells in the early exponential phase of aerobic growth. J Biol Chem 259:3368–3374
    [Google Scholar]
  43. Kita K, Konishi K., Anraku Y. 1984b; Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558–d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259:3375–3381
    [Google Scholar]
  44. Lauerer G, Kristjansson J. K, Langworthy T. A, König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105
    [Google Scholar]
  45. Lemos R. S, Gomes C. M., Teixeira M. 2001; Acidianus ambivalens complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 281:141–150
    [Google Scholar]
  46. Lindqvist A, Membrillo-Hernandez J, Poole R. K., Cook G. M. 2000; Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress. Antonie Van Leeuwenhoek 78:23–31
    [Google Scholar]
  47. Lübben M., Morand K. 1994; Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes a and o . J Biol Chem 269:21473–21479
    [Google Scholar]
  48. Lübben M, Kolmerer B., Saraste M. 1992; An archaebacterial terminal oxidase combines core structure of two mitochondrial respiratory complexes. EMBO J 11:805–812
    [Google Scholar]
  49. Lübben M, Arnaud S, Castresana J, Warne A, Albracht S. P. J., Saraste M. 1994a; A second terminal oxidase in Sulfolobus acidocaldarius . Eur J Biochem 224:151–159
    [Google Scholar]
  50. Lübben M, Warne A, Albracht S. P. J., Saraste M. 1994b; The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem. Mol Microbiol 13:327–335
    [Google Scholar]
  51. Masuda S, Matsumoto Y, Nagashima K. V. P, Shimada K, Inoure K, Bauer C. E., Matsuura K. 1999; Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum , Roseobacter denitrificans , and Rhodobacter capsulatus . J Bacteriol 181:4205–4215
    [Google Scholar]
  52. Mather M. W, Springer P, Hensel S, Buse G., Fee J. A. 1993; Cytochrome oxidase genes from Thermus thermophilus . Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3 . J Biol Chem 268:5395–5408
    [Google Scholar]
  53. Mattatall N. R, Jazairi J., Hill B. C. 2000; Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis . J Biol Chem 275:28802–28809
    [Google Scholar]
  54. Nikaido K, Noguchi S, Sakamoto J., Sone N. 1998; The cbaAB genes for bo3 -type cytochrome c oxidase in Bacillus stearothermophilus . Biochim Biophys Acta 1397262–267
    [Google Scholar]
  55. Nittis T, George G. N., Winge D. R. 2001; Yeast Sco1, a protein essential for cytochrome c oxidase function, is a Cu(I)-binding protein. J Biol Chem 276:42520–42526
    [Google Scholar]
  56. O'Gara J. P, Eraso J. M., Kaplan S. 1998; A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 180:4044–4050
    [Google Scholar]
  57. Ogiwara A, Uchiyama I, Takagi T., Kanehisa M. 1996; Construction and analysis of a profile library characterizing groups of structurally known proteins. Protein Sci 5:1991–1999
    [Google Scholar]
  58. Oh J.-I., Kaplan S. 1999; The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38:2688–2696
    [Google Scholar]
  59. Otten M. F, Rejinders W. N. M, Bedaux J. J. M, Westerhoff H. V, Krab K., Van Spanning R. J. M. 1999; The reduction state of the Q-pool regulates the electron flux through the branched respiratory network of Paracoccus denitrificans . Eur J Biochem 261:767–774
    [Google Scholar]
  60. Otten M. F, Stork D. M, Rejinders W. N. M, Westerhoff H. V., Van Spanning R. J. M. 2001; Regulation of expression of terminal oxidases in Paracoccus denitrificans . Eur J Biochem 268:2486–2497
    [Google Scholar]
  61. Pereira M. M, Santana M., Teixeira M. 2001; A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505185–208
    [Google Scholar]
  62. Purschke W. G, Schmidt C. L, Petersen A., Schäfer G. 1997; The terminal quinol oxidase of hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353
    [Google Scholar]
  63. Rentzsch A, Krummeck-Weiß G, Hofer A, Bartuschka A, Ostermann K., Rödel G. 1999; Mitochondrial copper metabolism in yeast: mutational analysis of Sco1p involved in the biogenesis of cytochrome c oxidase. Curr Genet 35:103–108
    [Google Scholar]
  64. Riistama S, Puustinen A, Garcia-Horsman J. A, Iwata S, Michel H., Wikström M. 1996; Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta Bioenerg 1275:1–4
    [Google Scholar]
  65. Saitou N, Nei M. 1987).The; neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  66. Sakamoto J, Honda Y., Sone N. 1997; A novel cytochrome b(o/a)3 -type oxidase from Bacillus stearothermophilus catalyzes cytochrome c-551 oxidation. J Biochem 122:764–771
    [Google Scholar]
  67. Sako Y, Nunoura T., Uchida A. 2001; Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C. Int J Syst Evol Microbiol 51:303–309
    [Google Scholar]
  68. Santana M, Pereira M. M, Elias N. P, Soares C. M., Teixeira M. 2001; Gene cluster of Rhodothermus marinus high-potential iron-sulfur protein : oxygen oxidoreductase, a caa3 -type oxidase belonging to the superfamily of heme-copper oxidase. J Bacteriol 183:687–699
    [Google Scholar]
  69. Schäfer G. 1996; Bioenergetics of the archaebacterium Sulfolobus . Biochim Biophy Acta 1277:163–200
    [Google Scholar]
  70. Schäfer G, Purschke W. G, Gleissner M., Schmidt C. L. 1996; Respiratory chain of archaea and extremophiles. Biochim Biophys Acta 1275:16–20
    [Google Scholar]
  71. Schäfer G, Moll R., Schmidt C. L. 2001; Respiratory enzymes from Sulfolobus acidocaldarius . Methods Enzymol 331:369–410
    [Google Scholar]
  72. Schulze M., Rödel G. 1989; Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene. Mol Gen Genet 216:37–43
    [Google Scholar]
  73. Schütz M, Brugna M, Lebrun E. 9 other authors 2000; Early evolution of cytochrome bc complexes. J Mol Biol 300:663–675
    [Google Scholar]
  74. Shapleigh J. P, Hill J. J, Alben J. O., Gennis R. B. 1992; Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides . J Bacteriol 174:2338–2343
    [Google Scholar]
  75. She Q, Singh R. K, Confalonieri F. 28 other authors 2001; The complete genome of the Crenarchaeote Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98:7835–7840
    [Google Scholar]
  76. Skulachev V. P. 1994; Decrease in the intracellular concentration of O2 as a special function of the cellular respiratory system. Biokhimiia 59:1910–1912
    [Google Scholar]
  77. Sone N., Fujiwara Y. 1991; Effects of aeration during growth of Bacillus stearothermophilus on proton pumping activity and change of terminal oxidase. J Biochem 110:1016–1021
    [Google Scholar]
  78. Soppa J. 1999a; Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box. Mol Microbiol 31:1589–1592
    [Google Scholar]
  79. Soppa J. 1999b; Transcription initiation in Archaea: facts, factors and future aspects. Mol Microbiol 31:1295–1305
    [Google Scholar]
  80. Soulimane T, Buse G, Bourenkov G. P, Bartunik H. D, Huber R., Than M. E. 2000; Structure and mechanism of the aberrant ba3 -cytochrome c oxidase from Thermus thermophilus . EMBO J 19:1766–1776
    [Google Scholar]
  81. Stetter K. O. 1996; Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158
    [Google Scholar]
  82. Thomas P. E, Ryan D., Levin W. 1976; An improved staining procedure for the detection of the peroxidase activity of cytochrome P -450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176
    [Google Scholar]
  83. Thompson J. D, Gibson T. J, Plewniak F, Jeanmougin F., Higgins D. G. 1997; The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  84. Toledo-Cuevas M, Barquera B, Gennis R. B, Wikström M., Garcia-Horsman J. A. 1998; The cbb3 -type cytochrome c oxidase from Rhodobacter sphaeroides , a proton-pumping heme-copper oxidase. Biochim Biophy Acta 1365421–434
    [Google Scholar]
  85. Tsubaki M, Mogi T, Hori H, Hirota S, Ogura T, Kitagawa T., Anraku Y. 1994; Molecular structure of redox metal centers of the cytochrome bo complex from Escherichia coli . Spectroscopic characterizations of the subunit I histidine mutant oxidases. J Biol Chem 269:30861–30868
    [Google Scholar]
  86. Van der Oost J, Lappalainen P, Musacchio A. 8 other authors 1992; Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of E. coli cytochrome o quinol oxidase complex. EMBO J 11:3209–3217
    [Google Scholar]
  87. Vargas M, Kashefi K, Blunt-Harris E. L., Lovely D. R. 1998; Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67
    [Google Scholar]
  88. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  89. Wakagi T., Oshima T. 1986; Membrane-bound ATPase and electron transport system of Sulfolobus acidocaldarius . Syst Appl Microbiol 159:425–426
    [Google Scholar]
  90. Wakagi T, Yamauchi T, Oshima T, Mueller M., Azzi A. 1989; A novel a -type terminal oxidase from Sulfolobus acidocaldarius with cytochrome c oxidase activity. Biochem Biophys Res Commun 165:1110–1114
    [Google Scholar]
  91. Wall D, Delaney J. M, Fayat O, Lipinska B, Yamamoto T., Georgopoulos C. 1992; arc -dependent thermal regulation and extragenic suppression of Escherichia coli cytochrome d operon. J Bacteriol 174:6554–6562
    [Google Scholar]
  92. Zillig W, Yeats S, Holz I, Bock A, Rettenberger M, Gropp F., Simon G. 1986; Desulfurolobus ambivalens , gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26000-0
Loading
/content/journal/micro/10.1099/mic.0.26000-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error