1887

Abstract

A previous investigation using the Fur titration assay system showed that possesses a gene encoding a protein homologous to IutA, the outer-membrane receptor for ferric aerobactin in . In this study, a 5·6 kb DNA region from the WP1 genome was cloned and two entire genes, and homologues, were identified which are absent from genomic sequences. The IutA and AlcD proteins share 43 % identity with the IutA protein and 24 % identity with the AlcD protein of unknown function, respectively. Primer extension analysis revealed that the gene is transcribed in response to low-iron availability from a putative promoter overlapped with a sequence resembling a consensus Fur-binding sequence. In agreement with the above finding, effectively utilized exogenously supplied aerobactin for growth under iron-limiting conditions. Moreover, insertional inactivation of impaired growth in the presence of aerobactin and incapacitated the outer-membrane fraction from iron-deficient cells for binding Fe-labelled aerobactin. These results indicate that the homologue encodes an outer-membrane protein which functions as the receptor for ferric aerobactin. Southern blot analysis revealed that the homologues are widely distributed in clinical and environmental isolates of . However, additional genes required for ferric aerobactin transport across the inner membrane remain to be clarified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26066-0
2003-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491217.html?itemId=/content/journal/micro/10.1099/mic.0.26066-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. I., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Aso H., Miyoshi S., Nakao H., Okamoto K., Yamamoto S. 2002; Induction of an outer membrane protein of 78 kDa in Vibrio vulnificus cultured in the presence of desferrioxamine B under iron-limiting conditions. FEMS Microbiol Lett 212:65–70
    [Google Scholar]
  3. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL,In Bergey's Manual of Systematic Bacteriology vol. 1 pp  518–538 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Bäumler A., Hantke K. 1992; Ferrioxamine uptake in Yersinia enterocolitica : characterization of the receptor protein FoxA. Mol Microbiol 6:1309–1321
    [Google Scholar]
  5. Braun V., Hantke K. 1991; Genetics of bacterial iron transport. In Handbook of Microbial Iron Chelates pp  107–138 Edited by Winkelmann G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  6. Braun V., Hantke K., Köster W. 1998; Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145
    [Google Scholar]
  7. Calderwood S. B., Mekalanos J. J. 1988; Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170:1015–1017
    [Google Scholar]
  8. Crosa J. H. 1999; Molecular genetics of iron transport as a component of bacterial virulence. In Iron and Infection , 2nd edn. pp  255–288 Edited by Bullen J. J., Griffiths E. New York: Wiley;
    [Google Scholar]
  9. de Lorenzo V., Marinez J. L. 1988; Aerobactin production as a virulence factor: a re-evaluation. Eur J Clin Microbiol Infect Dis 7:621–629
    [Google Scholar]
  10. Drechsel H., Winkelman G. 1997; Iron chelation and siderophores. In Transition Metals in Microbial Metabolism pp  1–49 Edited by Winkelmann G., Carrano C. J. Amsterdam: Harwood Academic;
    [Google Scholar]
  11. Funahashi T., Fujiwara C., Okada M., Miyoshi S., Shinoda S., Narimatsu S., Yamamoto S. 2000; Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 44:963–970
    [Google Scholar]
  12. Funahashi T., Moriya K., Uemura S., Miyoshi S., Shinoda S., Narimatsu S., Yamamoto S. 2002; Identification and characterization of pvuA , a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus . J Bacteriol 184:936–946
    [Google Scholar]
  13. Gibson F., Magrath D. L. 1969; The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochim Biophys Acta 192:175–184
    [Google Scholar]
  14. Griffiths E. 1999; Iron in biological systems. In Iron and Infection , 2nd edn. pp  1–26 Edited by Bullen J. J., Griffiths E. New York: Wiley;
    [Google Scholar]
  15. Guerinot M. L. 1994; Microbial iron transport. Annu Rev Microbiol 48:743–772
    [Google Scholar]
  16. Hantke K. 1981; Regulation of ferric transport in Escherichia coli K-12: isolation of a constitutive mutant. Mol Gen Genet 182:288–294
    [Google Scholar]
  17. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255
    [Google Scholar]
  18. Haygood M. G., Holt P. D., Butler A. 1993; Aerobactin production by a planktonic marine Vibrio sp. Limnol Oceanogr 38:1091–1097
    [Google Scholar]
  19. Krone W. J. A., Stegehuis F., Koningstein G., van Doorn C., Roosendaal B., de Graaf F. K., Oudega B. 1987; Characterization of the pColV-K30 encoded cloacin DF13/aerobactin outer membrane receptor protein of Escherichia coli ; isolation and purification of the protein and analysis of its nucleotide sequence and primary structure. FEMS Microbiol Lett 26:153–161
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Loper J. E., Henkels M. D. 1999; Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363
    [Google Scholar]
  22. Meyer J. M. 1992; Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa : possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958
    [Google Scholar]
  23. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  24. Moss J. E., Cardozo T. J., Zychlinsky A., Groisman E. A. 1999; The selC -associated SHI-2 pathogenicity island of Shigella flexneri . Mol Microbiol 33:74–83
    [Google Scholar]
  25. Murakami K., Ohta S., Fuse H., Takimura O., Kamimura K., Yamaoka Y. 1995; Vibrio species isolated from coastal ocean produces aerobactin. Microbios 84:231–238
    [Google Scholar]
  26. Murakami K., Fuse H., Takimura O., Inoue H., Yamaoka Y. 2000; Cloning and characterization of the iutA gene which encodes ferric aerobactin receptor from marine Vibrio species. Microbios 101:137–146
    [Google Scholar]
  27. Nishibuchi M., Kumagai K., Kaper J. B. 1991; Contribution of the tdh1 gene of Kanagawa phenomenon-positive Vibrio parahaemolyticus to production of extracellular thermostable direct hemolysin. Microb Pathog 11:453–460
    [Google Scholar]
  28. Okujo N., Yamamoto S. 1994; Identification of the siderophore from Vibrio hollisae and Vibrio mimicus as aerobactin. FEMS Microbiol Lett 118:187–192
    [Google Scholar]
  29. Payne S. M. 1988; Iron and virulence in the family Enterobacteriaceae . Crit Rev Microbiol 16:81–111
    [Google Scholar]
  30. Poole K., Young L., Neshat S. 1990; Enterobactin-mediated iron transport in Pseudomonas aeruginosa . J Bacteriol 172:6991–6996
    [Google Scholar]
  31. Pradel E., Guiso N., Locht C. 1998; Identification of AlcR, an AraC-type regulator of alcaligin siderophore synthesis in Bordetella bronchiseptica and Bordetella pertussis . J Bacteriol 180:871–880
    [Google Scholar]
  32. Purdy G. E., Payne S. M. 2001; The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. J Bacteriol 183:4176–4182
    [Google Scholar]
  33. Russell L. M., Holmes R. K. 1985; Highly toxinogenic but avirulent Park–Williams 8 strain of Corynebacterium diphtheriae does not produce siderophore. Infect Immun 47:575–578
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sebulsky M. T., Hohnstein D., Hunter M. D., Heinrichs D. E. 2000; Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus . J Bacteriol 182:4394–4400
    [Google Scholar]
  36. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding site. Proc Natl Acad Sci U S A 71:1342–1346
    [Google Scholar]
  37. Six S., Andrews S. C., Unden G., Guest J. R. 1994; Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct. J Bacteriol 176:6470–6478
    [Google Scholar]
  38. Stojiljkovic I., Baumler A. J., Hantke K. 1994; Fur regulon in gram-negative bacteria. Identification and characterization of new Escherichia coli iron-regulated genes by a Fur titration assay. J Mol Biol 236:531–545
    [Google Scholar]
  39. Struyvé M., Moons M., Tommassen J. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148
    [Google Scholar]
  40. Vokes S. A., Reever S. A., Torres A. G., Payne S. M. 1999; The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33:63–73
    [Google Scholar]
  41. von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21
    [Google Scholar]
  42. West S. E. H., Sparling P. F. 1987; Aerobactin utilization by Neisseria gonorrhoeae and cloning of a genomic DNA fragment that complements Escherichia coli fhuB mutations. J Bacteriol 169:3414–3421
    [Google Scholar]
  43. Yamamoto S., Okujo N., Matsuura S., Fujiwara I., Fujita Y., Shinoda S. 1994a; Siderophore-mediated utilization of iron bound to transferrin by Vibrio parahaemolyticus . Microbiol Immunol 38:687–693
    [Google Scholar]
  44. Yamamoto S., Okujo N., Yoshida T., Matsuura S., Shinoda S. 1994b; Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus . J Biochem 115:868–874
    [Google Scholar]
  45. Yamamoto S., Hara Y., Tomochika K., Shinoda S. 1995; Utilization of hemin and hemoglobin as iron sources by Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett 128:195–200
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26066-0
Loading
/content/journal/micro/10.1099/mic.0.26066-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error