1887

Abstract

have been implicated recently in the pathogenesis of digital dermatitis (DD) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DD or CODD lesions, have suggested relatedness of animal to some human oral species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal isolates have been compared with representative human oral strains of and . In adhesion assays using biotinylated treponemal cells, cells bound in consistently higher numbers to fibronectin, laminin, collagen type I, gelatin, keratin and lactoferrin than did or animal isolates. However, animal DD strains adhered to fibrinogen at equivalent or greater levels than . All strains bound to the amino-terminal heparin I/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to , while ovine strain UB1466 appeared more closely related to . These observations correlated with phenotypic properties. Thus, ATCC 35405, GM-1, and UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria and . Conversely, ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with or . Taken collectively, these results suggest that human oral-related have broad host specificity and that similar control or preventive strategies might be developed for human and animal -associated infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26111-0
2003-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491083.html?itemId=/content/journal/micro/10.1099/mic.0.26111-0&mimeType=html&fmt=ahah

References

  1. Aduse-Opoku J., Rangarajan M., Young K. A., Curtis M. A. 1998; Maturation of the arginine-specific proteases of Porphyromonas gingivalis W50 is dependent on a functional prR2 protease gene. Infect Immun 66:1594–1600
    [Google Scholar]
  2. Blowey R. W., Sharp M. W. 1988; Digital dermatitis in dairy cattle. Vet Rec 122:505–508
    [Google Scholar]
  3. Blowey R. W., Done S. H., Cooley W. 1994; Observations on the pathogenesis of digital dermatitis in cattle. Vet Rec 135:115–117
    [Google Scholar]
  4. Carranza N. Jr, Riviere G. R., Smith K. S., Adams D. F., Maier T. 1997; Differential attachment of oral treponemes to monolayers of epithelial cells. J Periodontol 68:1010–1018
    [Google Scholar]
  5. Choi B. K., Paster B. J., Dewhirst F. E., Gobel U. B. 1994; Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62:1889–1895
    [Google Scholar]
  6. Choi B. K., Nattermann H., Grund S., Haider W., Gobel U. B. 1997; Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. Int J Syst Bacteriol 47:175–181
    [Google Scholar]
  7. Cisar J. O., Kolenbrander P. E., McIntire F. C. 1979; Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii . Infect Immun 24:742–752
    [Google Scholar]
  8. Collighan R. J., Naylor R. D., Martin P. K., Cooley B. A., Buller N., Woodward M. J. 2000; A spirochete isolated from a case of severe virulent ovine foot disease is closely related to a treponeme isolated from human periodontitis and bovine digital dermatitis. Vet Microbiol 74:249–257
    [Google Scholar]
  9. Cunningham T. M., Walker E. M., Miller J. N., Lovett M. A. 1988; Selective release of the Treponema pallidum outer membrane and associated polypeptides with Triton X-114. J Bacteriol 170:5789–5796
    [Google Scholar]
  10. Dawson J. R., Ellen R. P. 1990; Tip-orientated adherence of Treponema denticola to fibronectin. Infect Immun 58:3924–3928
    [Google Scholar]
  11. Dawson J. R., Ellen R. P. 1994; Clustering of fibronectin adhesins toward Treponema denticola tips upon contact with immobilized fibronectin. Infect Immun 62:2214–2221
    [Google Scholar]
  12. Demirkan I., Carter S. D., Hart C. A., Woodward M. J. 1999a; Isolation and cultivation of a spirochaete from bovine digital dermatitis. Vet Rec 145:497–498
    [Google Scholar]
  13. Demirkan I., Walker R. L., Murray R. D., Blowey R. W., Carter S. D. 1999b; Serological evidence of spirochaetal infections associated with digital dermatitis in dairy cattle. Vet J 157:69–77
    [Google Scholar]
  14. Demirkan I., Carter S. D., Winstanley C., Bruce K. D., McNair N. V., Woodside M., Hart C. A. 2001; Isolation and characterization of a novel spirochaete from severe virulent ovine foot rot. J Med Microbiol 50:1061–1068
    [Google Scholar]
  15. Dewhirst F. E., Tamer M. A., Ericson R. E., Lau C. N., Levanos V. A., Boches S. K., Galvin J. L., Paster B. J. 2000; The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol 15:196–202
    [Google Scholar]
  16. Dopfer D., Koopmans A., Meifer F. A. 7 other authors 1997; Histological and bacteriological evaluation of digital dermatitis in cattle, with special reference to spirochaetes and Campylobacter faecalis. Vet Rec. 140620–623
  17. Edwards A. M., Dymock D., Jenkinson H. F. 2003; From tooth to hoof: treponemes in tissue-destructive diseases. J Appl Microbiol 94:767–780
    [Google Scholar]
  18. Ellen R. P., Dawson J. R., Yang P. F. 1994; Treponema denticola as a model for polar adhesion and cytopathogenicity of spirochetes. Trends Microbiol 2:114–119
    [Google Scholar]
  19. Ellen R. P., Ko K. S., Lo C. M., Grove D. A., Ishihara K. 2000; Insertional inactivation of the prtP gene of Treponema denticola confirms dentilisin's disruption of epithelial junctions. J Mol Microbiol Biotechnol 2:581–586
    [Google Scholar]
  20. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.6a2 Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  21. Fenno J. C., Muller K. H., McBride B. C. 1996; Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola . J Bacteriol 178:2489–2497
    [Google Scholar]
  22. Fenno J. C., Hannam P. M., Leung W. K., Tamura M., Uitto V. J., McBride B. C. 1998; Cytopathic effects of the major surface protein and the chymotrypsin-like protease of Treponema denticola . Infect Immun 66:1869–1877
    [Google Scholar]
  23. Fenno J. C., Lee S. Y., Bayer C. H., Ning Y. 2001; The opdB locus encodes the trypsin-like peptidase activity of Treponema denticola . Infect Immun 69:6193–6200
    [Google Scholar]
  24. Grenier D. 1992; Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola . Oral Microbiol Immunol 7:280–284
    [Google Scholar]
  25. Grenier D., Uitto V. J., McBride B. C. 1990; Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane. Infect Immun 58:347–351
    [Google Scholar]
  26. Haapasalo M., Singh U., Mcbride B. C., Uitto V. J. 1991; Sulfhydryl-dependent attachment of Treponema denticola to laminin and other proteins. Infect Immun 59:4230–4237
    [Google Scholar]
  27. Haapasalo M., Hannam P., McBride B. C., Uitto V. J. 1996; Hyaluronan, a possible ligand mediating Treponema denticola binding to periodontal tissue. Oral Microbiol Immunol 11:156–160
    [Google Scholar]
  28. Harper-Owen R., Dymock D., Booth V., Weightman A. J., Wade W. G. 1999; Detection of unculturable bacteria in periodontal health and disease by PCR. J Clin Microbiol 37:1469–1473
    [Google Scholar]
  29. Hayashi M., Yamada K. M. 1983; Domain structure of the carboxyl-terminal half of human plasma fibronectin. J Biol Chem 258:3332–3340
    [Google Scholar]
  30. Ishihara K., Kuramitsu H. K. 1995; Cloning and expression of a neutral phosphatase gene from Treponema denticola . Infect Immun 63:1147–1152
    [Google Scholar]
  31. Ishihara K., Miura T., Kuramitsu H. K., Okuda K. 1996; Characterization of the Treponema denticola prtP gene encoding a prolyl-phenylalanine-specific protease (dentilisin. Infect Immun 64:5178–5186
    [Google Scholar]
  32. Keulers R. A., Maltha J. C., Mikx F. H., Wolters-Lutgerhorst J. M. 1993; Involvement of treponemal surface-located proteins and carbohydrate moieties in the attachment of Treponema denticola ATCC 33520 to cultured rat palatal epithelial cells. Oral Microbiol Immunol 8:236–241
    [Google Scholar]
  33. Kolenbrander P. E. 2000; Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437
    [Google Scholar]
  34. Kolenbrander P. E., Andersen R. N., Moore L. V. 1990; Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol 56:3890–3894
    [Google Scholar]
  35. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev 62:1244–1263
    [Google Scholar]
  36. Loesche W. J. 1993; Bacterial mediators in periodontal disease. Clin Infect Dis 16:S203–S210
    [Google Scholar]
  37. Lux R., Miller J. N., Park N.-H., Shi W. 2001; Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola . Infect Immun 69:6276–6283
    [Google Scholar]
  38. Makinen K. K., Chen C. Y., Makinen P. L. 1996; Proline iminopeptidase from the outer cell envelope of the human oral spirochete Treponema denticola ATCC 35405. Infect Immun 64:702–708
    [Google Scholar]
  39. Naylor R. D., Martin P. K., Jones J. R., Burnell M. C. 1998; Isolation of spirochaetes from an incident of severe virulent ovine footrot. Vet Rec 143:690–691
    [Google Scholar]
  40. Nelson K., Selander R. K. 1994; Analysis of genetic variation by polymerase chain reaction-based nucleotide sequencing. Methods Enzymol 235:174–183
    [Google Scholar]
  41. Page R. C., Engel L. D., Narayanan A. S., Clagett J. A. 1978; Chronic inflammatory gingival and periodontal disease. J Am Med Assoc 240:545–550
    [Google Scholar]
  42. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783
    [Google Scholar]
  43. Read D. H., Walker R. L. 1998; Papillomatous digital dermatitis (footwarts) in California dairy cattle: clinical and gross pathologic findings. J Vet Diagn Invest 10:67–76
    [Google Scholar]
  44. Rosen G., Naor R., Sela M. N. 1999; Multiple forms of the major phenylalanine specific protease in Treponema denticola . J Periodont Res 34:269–276
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Sela M. N. 2001; Role of Treponema denticola in periodontal diseases. Crit Rev Oral Biol Med 12:399–413
    [Google Scholar]
  48. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. J. 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144
    [Google Scholar]
  49. Staggs T. M., Greer M. H., Baseman J. B., Holt S. C., Tryon V. V. 1994; Identification of lactoferrin-binding proteins from Treponema pallidum subspecies pallidum and Treponema denticola . Mol Microbiol 12:613–619
    [Google Scholar]
  50. Stamm L. V., Bergen H. L., Walker R. L. 2002; Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S–23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 40:3463–3469
    [Google Scholar]
  51. Umemoto T., Namikawa I. 1994; Binding of host-associated treponeme proteins to collagens and laminins: a possible mechanism of spirochetal adherence to host tissues. Microbiol Immunol 38:655–663
    [Google Scholar]
  52. Walker R. L., Read D. H., Loretz K. J., Nordhausen R. W. 1995; Spirochetes isolated from dairy cattle with papillomatous digital dermatitis and interdigital dermatitis. Vet Microbiol 47:343–355
    [Google Scholar]
  53. Yao E. S., Lamont R. J., Leu S. P., Weinberg A. 1996; Interbacterial binding among strains of pathogenic and commensal oral bacterial species. Oral Microbiol Immunol 11:35–41
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26111-0
Loading
/content/journal/micro/10.1099/mic.0.26111-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error