1887

Abstract

The 8399 clinical isolate secretes dihydroxybenzoic acid (DHBA) and a high-affinity catechol siderophore, which is different from other bacterial iron chelators already characterized. Complementation assays with enterobactin-deficient strains led to the isolation of a cosmid clone containing 8399 genes required for the biosynthesis and activation of DHBA. Accordingly, the cloned fragment harbours a polycistronic operon encoding predicted proteins highly similar to several bacterial proteins required for DHBA biosynthesis from chorismic acid. Genes encoding deduced proteins related to the Fes and the DhbF proteins, and a putative phosphopantetheinyl transferase, all of them involved in the assembly and utilization of catechol siderophores in other bacteria, were found next to the locus. This 8399 gene cluster also contained the , and predicted genes encoding proteins potentially involved in transport of ferric siderophore complexes. The deduced products of the and genes are putative membrane proteins that belong to the RND and MFS efflux pump proteins, respectively. Interestingly, P45 is highly related to the P43 (EntS) protein that participates in the secretion of enterobactin. Although P114 is similar to other bacterial efflux pump proteins involved in antibiotic resistance, its genetic arrangement within this 8399 locus is different from that described in other bacteria. The product of is a Fur- and iron-regulated surface-exposed outer-membrane protein. These characteristics together with the presence of a predicted TonB box and its high similarity to other siderophore receptors indicate that OM73 plays such a role in 8399. The 184 nt intergenic region contains promoter elements that could drive the expression of these divergently transcribed genes, all of which are in close proximity to almost perfect Fur boxes. This arrangement explains the iron- and Fur-regulated expression of , and provides strong evidence for a similar regulation for the expression of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26204-0
2003-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491227.html?itemId=/content/journal/micro/10.1099/mic.0.26204-0&mimeType=html&fmt=ahah

References

  1. Actis L. A., Potter S., Crosa J. H. 1985; Iron-regulated outer membrane protein OM2 of Vibrio anguillarum is encoded by virulence plasmid pJM1. J Bacteriol 161:736–742
    [Google Scholar]
  2. Actis L. A., Fish W., Crosa J. H., Kellerman K., Ellenberger S., Hauser F., Sanders-Loehr J. 1986; Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1. J Bacteriol 167:57–65
    [Google Scholar]
  3. Actis L. A., Tolmasky M. E., Farrell D., Crosa J. H. 1988; Genetic and molecular characterization of essential components of the Vibrio anguillarum plasmid-mediated iron-transport system. J Biol Chem 263:2853–2860
    [Google Scholar]
  4. Actis L. A., Tolmasky M. E., Crosa L. M., Crosa J. H. 1993; Effect of iron-limiting conditions on growth of clinical isolates of Acinetobacter baumannii . J Clin Microbiol 31:2812–2815
    [Google Scholar]
  5. Actis L. A., Smoot J. C., Barancin C. E., Findlay R. H. 1999; Comparison of differential plating media and two chromatography techniques for the detection of histamine production in bacteria. J Microbiol Methods 39:79–90
    [Google Scholar]
  6. Anstey N. M., Currie B. J., Withnall K. M. 1991; Community-acquired Acinetobacter pneumonia in the northern territory of Australia. Clin Infect Dis 14:83–91
    [Google Scholar]
  7. Armstrong S. K., Pettis G. S., Forrester L. J., McIntosh M. A. 1989; The Escherichia coli enterobactin biosynthesis gene entD : nucleotide sequence and membrane localization of its protein product. Mol Microbiol 3:757–766
    [Google Scholar]
  8. Arnow L. 1937; Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537
    [Google Scholar]
  9. Bagg A., Neilands J. 1985; Mapping of a mutation affecting regulation of iron uptake systems in Escherichia coli K-12. J Bacteriol 161:450–453
    [Google Scholar]
  10. Barancin C. E., Smoot J. C., Findlay R. H., Actis L. A. 1998; Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum . Plasmid 39:235–244
    [Google Scholar]
  11. Bergogne-Berenzin E., Towner K. J. 1996; Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165
    [Google Scholar]
  12. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  13. Bolivar F., Rodriguez R. L., Greene P. J., Betlach H. L., Heynecker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  14. Borges-Walmsley M. I., Walmsley A. R. 2001; The structure and function of drug pumps. Trends Microbiol 9:71–79
    [Google Scholar]
  15. Boyer H. W., Roulland-Doussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  16. Brickman T., McIntosh M. 1992; Overexpression and purification of ferric enterobactin esterase from Escherichia coli . Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:12350–12355
    [Google Scholar]
  17. Calderwood S. B., Mekalanos J. 1988; Confirmation of the fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170:1015–1017
    [Google Scholar]
  18. Chenault S. S., Earhart C. F. 1991; Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5:1405–1413
    [Google Scholar]
  19. Coderre P. E., Earhart C. F. 1989; The entD gene of the Escherichia coli K12 enterobactin gene cluster. J Gen Microbiol 135:3043–3055
    [Google Scholar]
  20. Crosa J. H. 1989; Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530
    [Google Scholar]
  21. Crosa J. H., Walsh C. T. 2002; Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249
    [Google Scholar]
  22. de Lorenzo V., Bindereif A., Paw B. H., Neilands J. B. 1986; Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol 165:570–578
    [Google Scholar]
  23. Dorsey C. W., Tomaras A. P., Actis L. A. 2002; Genetic and phenotypic analysis of Acinetobacter baumannii insertion derivatives generated with a Transposome system. Appl Environ Microbiol 68:6353–6360
    [Google Scholar]
  24. Earhart C. F. others 1996; Uptake and metabolism of iron and molybdenum. In Escherichia coli and Salmonella. Cellular and Molecular Biology pp  1075–1090 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Echenique J. R., Arienti H., Tolmasky M. E., Read R., Staneloni J., Crosa J. H., Actis L. A. 1992; Characterization of a high-affinity iron transport system in Acinetobacter baumannii . J Bacteriol 174:7670–7679
    [Google Scholar]
  26. Echenique J. R., Dorsey C. W., Patrito L. C., Petroni A., Tolmasky M. E., Actis L. A. 2001; Acinetobacter baumannii has two genes encoding glutathione-dependent formaldehyde dehydrogenase: evidence for differential regulation in response to iron. Microbiology 147:2805–2815
    [Google Scholar]
  27. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13
    [Google Scholar]
  28. Franza T., Expert D. 1991; The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol 173:6874–6881
    [Google Scholar]
  29. Franza T., Enard C., van Gijsegem F., Expert D. 1991; Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Mol Microbiol 5:1319–1329
    [Google Scholar]
  30. Furrer J. L., Sanders D. N., Hook-Barnard I. G., McIntosh M. A. 2002; Export of the siderophore enterobactin in Escherichia coli : involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234
    [Google Scholar]
  31. Gehring A. M., Bradley K. A., Walsh C. T. 1997; Enterobactin biosynthesis in Escherichia coli : isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36:8495–8503
    [Google Scholar]
  32. Graber K., Smoot L. M., Actis L. A. 1998; Expression of iron binding proteins and hemin binding activity in the dental pathogen Actinobacillus actinomycetemcomitans . FEMS Microbiol Lett 163:135–142
    [Google Scholar]
  33. Griffiths G. L., Sigel S. P., Payne S. M., Neilands J. B. 1984; Vibriobactin, a siderophore from Vibrio cholerae . J Biol Chem 259:383–385
    [Google Scholar]
  34. Hantke K. 1984; Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197:337–341
    [Google Scholar]
  35. Hartstein A. I., Rashad A. L., Liebler J. M. 7 other authors 1988; Multiple intensive care unit outbreak of Acinetobacter calcoaceticus subspecies anitratus respiratory infection and colonization associated with contaminated, reusable ventilators and resuscitation bags. Am J Med 85:624–631
    [Google Scholar]
  36. Jalal M., Hossain D., van der Helm J., Sanders-Loerh J., Actis L. A., Crosa J. H. 1989; Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum . J Am Chem Soc 111:292–296
    [Google Scholar]
  37. Knauf V. C., Nester E. W. 1982; Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54
    [Google Scholar]
  38. Leong S., Ditta G. S., Helinski D. R. 1982; Heme biosynthesis in Rhizobium : identification of a cloned gene coding for an amino levulininc acid synthetase from Rhizobium meliloti . J Biol Chem 257:8724–8730
    [Google Scholar]
  39. Magnet S., Courvalin P., Lambert T. 2001; Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380
    [Google Scholar]
  40. Massad G., Arceneaux J. E. L., Byers B. R. 1994; Diversity of siderophore genes encoding biosynthesis of 2,3-dihydroxybenzoic acid in Aeromonas spp. Biometals 7:227–236
    [Google Scholar]
  41. Meade H. M., Long S. R., Ruvkum S. E., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  42. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150:53–61
    [Google Scholar]
  44. Nau C., Konisky J. 1989; Evolutionary relationship between the TonB-dependent outer membrane transport proteins: nucleotide and amino acid sequences of the Escherichia coli colicin I receptor gene. J Bacteriol 171:1041–1047
    [Google Scholar]
  45. Neilands J. 1981; Microbial iron compounds. Annu Rev Biochem 50:715–731
    [Google Scholar]
  46. Neilands J. 1995; Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726
    [Google Scholar]
  47. O'Brien I. G., Gibson F. 1970; The structure of enterochelin and related 2,3-dihydroxy- N -benzoyl serine conjugates from Escherichia coli . Biochim Biophys Acta 215:393–402
    [Google Scholar]
  48. Olmsted J. B. 1981; Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem 256:11955–11957
    [Google Scholar]
  49. Parkhill J., Wren B. W., Thomson N. R. 38 other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature 413:523–527
    [Google Scholar]
  50. Paulsen I. T., Brown M. H., Skurray R. A. 1996; Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608
    [Google Scholar]
  51. Payne S. M., Niesel D. W., Peixotto S. S., Lawlor K. M. 1983; Expression of hydroxamate and phenolate siderophores by Shigella flexneri . J Bacteriol 155:949–955
    [Google Scholar]
  52. Persmark M., Expert D., Neilands J. B. 1989; Isolation, characterization, and synthesis of chrysotobactin, a compound with siderophore activity from Erwinia chrysanthemi . J Biol Chem 264:3187–3189
    [Google Scholar]
  53. Pickett C. L., Hayes L., Earhart C. F. 1984; Molecular cloning of the Escherichia coli K12 entACGBE genes. FEMS Microbiol Lett 24:77–80
    [Google Scholar]
  54. Pollack J. R., Neilands J. B. 1970; Enterobactin, an iron transport compound from Salmonella typhimurium . Biochem Biophys Res Commun 38:989–992
    [Google Scholar]
  55. Pollack J. R., Ames B. N., Neilands J. B. 1970; Iron transport in Salmonella typhimurium : mutants blocked in the biosynthesis of enterobactin. J Bacteriol 104:635–639
    [Google Scholar]
  56. Poole K., Heinrichs D. E., Neshat S. 1993a; Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa : regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 10:529–544
    [Google Scholar]
  57. Poole K., Krebes K., McNally C., Neshat S. 1993b; Multiple antibiotic resistance in Pseudomonas aeruginosa : evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372
    [Google Scholar]
  58. Rogers H. J. 1973; Iron-binding catechols and virulence in Escherichia coli . Infect Immun 7:445–446
    [Google Scholar]
  59. Rowland B. M., Grossman T. H., Osburne M. S., Tabor H. W. 1996; Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 178:119–123
    [Google Scholar]
  60. Rusnak F., Sakaitani M., Drueckhammer D., Reichert J., Walsh C. 1991; Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry 30:2916–2927
    [Google Scholar]
  61. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  62. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
    [Google Scholar]
  63. Shea C., McIntosh M. 1991; Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli . Mol Microbiol 5:1415–1428
    [Google Scholar]
  64. Smoot L. M., Bell E. C., Paz R. L., Corbin K. A., Hall D. D., Steenbergen J. N., Harner A. C., Actis L. A. 1998; Molecular and genetic analysis of iron uptake proteins in the Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius. Front Biosci 3:d989–d996
    [Google Scholar]
  65. Stachel S., An G., Flores C., Nester E. 1985; A Tn 3 lacZ transposon for the random generation of β -galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium . EMBO J 4:891–898
    [Google Scholar]
  66. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  67. Studier F., Rosenberg A., Dunn J., Dubendorff J. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  68. Tabor S., Richardson C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078
    [Google Scholar]
  69. Tolmasky M. E., Wertheimer A., Actis L. A., Crosa J. H. 1994; Characterization of the Vibrio anguillarum fur gene: role in regulation of expression of the FatA outer membrane protein and catechols. J Bacteriol 176:213–220
    [Google Scholar]
  70. Tolmasky M. E., Actis L. A., Crosa J. H. 1995; A histidine decarboxylase gene encoded by the Vibrio anguillarum plasmid pJM1 is essential for virulence: histamine is a precursor in the biosynthesis of anguibactin. Mol Microbiol 15:87–95
    [Google Scholar]
  71. Walsh C. T., Liu J., Rusnak F., Sakaitani M. 1990; Molecular studies on enzymes in chorismate metabolism and enterobactin biosynthetic pathway. Chem Rev 90:1105–1129
    [Google Scholar]
  72. Welch T. J., Chai S., Crosa J. H. 2000; The overlapping angB and angG genes are encoded within the trans -acting factor region of the virulence plasmid in Vibrio anguillarum : essential role in siderophore biosynthesis. J Bacteriol 182:6762–6773
    [Google Scholar]
  73. Wilchek M., Bayer E. A. 1988; The avidin-biotin complex in bioanalytical applications. Anal Biochem 171:1–32
    [Google Scholar]
  74. Wyckoff E. E., Stoebner J. A., Reed K. E., Payne S. M. 1997; Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol 179:7055–7062
    [Google Scholar]
  75. Yamamoto S., Okujo N., Sakakibara Y. 1994; Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii . Arch Microbiol 162:249–252
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26204-0
Loading
/content/journal/micro/10.1099/mic.0.26204-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error