1887

Abstract

Biofilm structural heterogeneity affects a broad range of microbially catalysed processes. Solute transport limitation and autoinhibitor production, two factors that contribute to heterogeneous biofilm development, were investigated using BacMIST, a computer simulation model. BacMIST combines a cellular automaton algorithm for biofilm growth with Brownian diffusion for solute transport. The simulation represented the growth of microbial unit cells in a three-dimensional domain modelled after a repeating section of a constant depth film fermenter. The simulation was implemented to analyse the effects of various levels of transport limitation on a growing single-species biofilm. In a system with rapid solute diffusion, cells throughout the biofilm grew at their maximum rate, and no solute gradient was formed over the biofilm thickness. In increasingly transport-limited systems, the rapidly growing fraction of the biofilm population decreased, and was found exclusively at the biofilm–liquid interface. Trans-biofilm growth substrate gradients also deepened with increasing transport limitation. Autoinhibitory biofilm growth was simulated for various rates of microbially produced inhibitor transport. Inhibitor transport rates affected both the biofilm population dynamics and the resulting biofilm structures. The formation of networks of void spaces in slow-growing regions of the biofilm and the development of columns in the fast-growing regions suggested a possible mechanism for the microscopically observed evolution of channels in biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26211-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492859.html?itemId=/content/journal/micro/10.1099/mic.0.26211-0&mimeType=html&fmt=ahah

References

  1. Berk D. A., Swartz M. A., Leu A. J., Jain R. K. 1996; Transport in lymphatic capillaries: II. Microscopic velocity measurement with fluorescence recovery after photobleaching. Am J Physiol 270:330–337
    [Google Scholar]
  2. Casey E., Glennon B., Hamer G. 1999; Review of membrane aerated biofilm reactors. Resour Conserv Recycl 27:203–215
    [Google Scholar]
  3. Characklis W. G. 1990a; Biofilm processes. In Biofilms pp  195–232 Edited by Characklis W. G., Marshall K. C. New York: Wiley;
    [Google Scholar]
  4. Characklis W. G. 1990b; Molecular diffusion and reaction in a biofilm. In Biofilms pp  319–325 Edited by Characklis W. G., Marshall K. C. New York: Wiley;
    [Google Scholar]
  5. Cowan S. E., Gilbert E., Liepmann D., Keasling J. D. 2000; Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl Environ Microbiol 66:4481–4485
    [Google Scholar]
  6. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  7. de Beer D., Schramm A. 1999; Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Sci Technol 39:173–178
    [Google Scholar]
  8. de Beer D., Stoodley P., Roe F., Lewandowski Z. 1994; Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138
    [Google Scholar]
  9. Gujer W., Wanner O. 1990; Modeling mixed population biofilms. In Biofilms pp  397–444 Edited by Characklis W. G., Marshall K. C. New York: Wiley;
    [Google Scholar]
  10. Hermanowicz S. 1999; Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39:107–114
    [Google Scholar]
  11. Hermanowicz S. W. 2001; A simple 2D biofilm model yields a variety of morphological features. Math Biosci 169:1–14
    [Google Scholar]
  12. Holmstroem C., Egan S., Franks A., McCloy S., Kjelleberg S. 2002; Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58
    [Google Scholar]
  13. Hunt S. M., Hamilton M. A., Sears J. T., Harkin G., Reno J. 2003; A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology 149:1155–1163
    [Google Scholar]
  14. Ingraham J. L., Marr A. G. others 1996; Effect of temperature, pressure, pH, and osmotic stress on growth. In Escherichia coli and Salmonella , 2nd edn. Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Ito T., Okabe S., Satoh H., Watanabe Y. 2002; Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 68:1392–1402
    [Google Scholar]
  16. Jackson D. W., Suzuki K., Oakford L., Simecka J. W., Hart M. E., Romeo T. 2002; Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli . J Bacteriol 184:290–301
    [Google Scholar]
  17. Johnson E. M., Berk D. A., Jain R. K., Deen W. M. 1996; Hindered diffusion in agarose gels: test of effective medium model. Biophys J 70:1017–1023
    [Google Scholar]
  18. Kinniment S. L., Wimpenny J. W., Adams D., Marsh P. D. 1996; The effect of chlorhexidine on defined, mixed culture oral biofilms grown in a novel model system. J Appl Bacteriol 81:120–125
    [Google Scholar]
  19. Kreft J. U., Picioreanu C., Wimpenny J. W., van Loosdrecht M. C. 2001; Individual-based modelling of biofilms. Microbiology 147:2897–2912
    [Google Scholar]
  20. Lawrence J. R., Korber D. R., Hoyle B. D., Costerton J. W., Caldwell D. E. 1991; Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567
    [Google Scholar]
  21. Lee S. B., Kim I. C., Miller C. A. 1989; Random-walk simulation of diffusion-controlled processes among static traps. Physiol Rev B 39:11833–11839
    [Google Scholar]
  22. Lewandowski Z., Stoodley P., Altobelli S., Fukushima E. 1994; Hydrodynamics and kinetics in biofilm systems – recent advances and new problems. Water Sci Technol 20:223–229
    [Google Scholar]
  23. Lewis K. 2000; Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514
    [Google Scholar]
  24. Mah T. F., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39
    [Google Scholar]
  25. Massol-Deya A., Whallon J., Hickey R., Tiedje J. 1995; Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61:769–777
    [Google Scholar]
  26. Moller S., Sternberg C., Andersen J. B., Christensen B. B., Ramos J. L., Givskov M., Molin S. 1998; In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732
    [Google Scholar]
  27. Morgan T. D., Wilson M. 2001; The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermenter. J Appl Microbiol 91:47–53
    [Google Scholar]
  28. Murga R., Stewart P. S., Daly D. 1995; Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45:503–510
    [Google Scholar]
  29. Noguera D., Pizarro G., Stahl D., Rittmann B. 1999; Simulation of multispecies biofilm development in three dimensions. Water Sci Technol 39:123–130
    [Google Scholar]
  30. Norwood D. E., Gilmour A. 2000; The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J Appl Microbiol 88:512–520
    [Google Scholar]
  31. Picioreanu C., van Loosdrecht M. C. 2002; A mathematical model for initiation of microbiologically influenced corrosion by differential aeration. J Electrochem Soc 149:B211–B223
    [Google Scholar]
  32. Picioreanu C., van Loosdrecht M. C., Heijnen J. J. 1998; A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731
    [Google Scholar]
  33. Pizarro G., Griffeath D., Noguera D. 2001; Quantitative cellular automaton model for biofilms. J Environ Eng 127:782–789
    [Google Scholar]
  34. Purevdorj B., Costerton J. W., Stoodley P. 2002; Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464
    [Google Scholar]
  35. Rasmussen K., Lewandowski Z. 1998; Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59:302–309
    [Google Scholar]
  36. Ren D., Sims J., Wood T. 2001; Inhibition of biofilm formation and swarming of Escherichia coli by 4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736
    [Google Scholar]
  37. Ren D., Sims J., Wood T. 2002; Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5(bromomethylene)3-butyl-2(5H)-furanone. Lett Appl Microbiol 34:293–299
    [Google Scholar]
  38. Roberts A. P., Pratten J., Wilson M., Mullany P. 1999; Transfer of a conjugative transposon, Tn5397, in a model oral biofilm. FEMS Microbiol Lett 177:63–66
    [Google Scholar]
  39. Schramm A., de Beer D., van den Heuvel J. C., Ottengraf S., Amann R. 1999; Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–3696
    [Google Scholar]
  40. Siebel M., Characklis W. 1991; Observations of binary population biofilms. Biotechnol Bioeng 37:778–789
    [Google Scholar]
  41. Singh P. K., Parsek M. R., Greenberg E. P., Welsh M. J. 2002; A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555
    [Google Scholar]
  42. Stewart P., Camper A., Handran S., Huang C.-T., Warnecke M. 1997; Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10
    [Google Scholar]
  43. Stickler D. 1999; Biofilms. Curr Opin Microbiol 2:270–275
    [Google Scholar]
  44. Stoodley P., Lewandowski Z., Boyle J. D., Lappin-Scott H. M. 1999; Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65:83–92
    [Google Scholar]
  45. Vogelsang C., Schramm A., Picioreanu C., van Loosdrecht M., Ostgaard K. 2002; Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater. Hydrobiologia 469:165–178
    [Google Scholar]
  46. Wilkinson T. G., Topiwala H. H., Hamer G. 1974; Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng 16:41–59
    [Google Scholar]
  47. Wimpenny J., Colasanti R. 1997; A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16
    [Google Scholar]
  48. Wimpenny J. W. T., Kinniment S. L., Scourfield M. A. 1993; The physiology and biochemistry of biofilm. In Microbial Biofilms: Formation and Control Edited by Denyer S. P., Gorman M., Sussman S. P. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26211-0
Loading
/content/journal/micro/10.1099/mic.0.26211-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error