1887

Abstract

A remarkable range of novel antibiotics is attracting increasing interest as a major new weapon in the campaign against bacterial infection. They are based on the toxic peptides that provide the innate immune system of animals, and it is claimed that bacteria will be unable to evolve resistance to them because they attack the ‘Achilles' heel’ of bacterial membrane structure. Both experimental evidence and theoretical arguments suggest that this claim is doubtful. If so, the introduction of these substances into general use may provoke the evolution of resistance to our own defence proteins and thus compromise our natural defences against infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26265-0
2003-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491367.html?itemId=/content/journal/micro/10.1099/mic.0.26265-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M., Bager F., Jensen N. E., Madsen M., Meyling A., Wegener H. C. 1998; Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. APMIS 106:606–622
    [Google Scholar]
  2. Andersson D. I., Levin B. R. 1999; The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493
    [Google Scholar]
  3. Andreu D., Rivas L. 1998; Animal antimicrobial peptides: an overview. Biopolymers 47:415–433
    [Google Scholar]
  4. Austin D. J., Kristinsson K. G., Anderson R. M. 1999; The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A 96:1152–1156
    [Google Scholar]
  5. Bayer A. S., Cheng D., Yeaman M. R., Corey G. R., McClelland R. S., Hurrell I. E., Fowler V. G. 1998; In vitro resistance to thrombin-induced platelet microbicidal protein (tPMP) among Staphylococcus aureus bacteremic isolates correlates with endovascular infection source. Antimicrob Agents Chemother 42:3169–3172
    [Google Scholar]
  6. Bayer A. S., Prasad R., Chandra J. 8 other authors 2000; In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun 68:3548–3553
    [Google Scholar]
  7. Crandall A. D., Montville T. J. 1998; Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237
    [Google Scholar]
  8. Groisman E. A., Parra-Lopez C., Salcedo M., Lipps C. J., Heffron F. 1992; Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci U S A 89:11939–11943
    [Google Scholar]
  9. Guina T., Yi E. C., Wang H., Hackett M., Miller S. I. 2000; A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182:4077–4086
    [Google Scholar]
  10. Hancock R. E. W., Chapple D. S. 1999; Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323
    [Google Scholar]
  11. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. B. 1999; Phylogenetic perspectives in innate immunity. Science 284:1313–1318
    [Google Scholar]
  12. Jensen L. B., Baloda S., Boye M., Aarestrup F. M. 2001; Antimicrobial resistance among Pseudomonas spp and the Bacillus cereus group isolated from Danish agricultural soil. Environ Int 26:581–587
    [Google Scholar]
  13. Kupferwasser L. I., Skurray R. A., Brown M. H., Firth N., Yeaman M. R., Bayer A. S. 1999; Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43:2395–2399
    [Google Scholar]
  14. Levin B. R. 2001; Minimizing potential resistance: a population dynamics viewpoint. Clin Infect Dis 33 :Suppl. 3S161–S169
    [Google Scholar]
  15. Levin B. R., Lipsitch M., Perrot V. 1997; The population genetics of antibiotic resistance. Clin Infect Dis 24:S9–S16
    [Google Scholar]
  16. Lipsitch M., Bergstrom C. T., Levin B. R. 2000; The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci U S A 97:1938–1943
    [Google Scholar]
  17. Massa S., Petruccioli M., Fanelli M., Gori L. 1995; Drug resistant bacteria in non carbonated mineral waters. Microbiol Res 150:403–408
    [Google Scholar]
  18. Mazzotta A. S., Modi K., Montville T. J. 2000; Nisin-resistant (Nisr) Listeria monocytogenes and Nisr Clostridium botulinum are not resistant to common food preservatives. J Food Sci 65:888–890
    [Google Scholar]
  19. Miller S. I., Pulkkinen W. S., Selsted M. E., Mekelanos J. J. 1990; Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence region of Salmonella typhimurium . Infect Immun 58:3706–3710
    [Google Scholar]
  20. Ming X., Daeschel M. A. 1993; Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott. J Food Prot 56:944–948
    [Google Scholar]
  21. Neumuller A. M., Konz D., Marahiel M. A. 2001; The two-component regulatory system BacRS is associated with bacitracin “self-resistance” of Bacillus licheniformis ATCC 10716. Eur J Biochem 268:3180–3189
    [Google Scholar]
  22. Otto M., Peschel A., Gotz F. 1998; Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tu 3298. FEMS Microbiol Lett 166:203–211
    [Google Scholar]
  23. Oyston P. C., Dorrell N., Williams K., Li S. R., Green M., Titball R. W., Wren B. W. 2000; The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pesti s. Infect Immun 68:3419–3425
    [Google Scholar]
  24. Pag U., Heidrich C., Bierbaum G., Sahl H.-G. 1999; Molecular analysis of expression of the lantibiotic Pep5 immunity phenotype. Appl Environ Microbiol 65:591–598
    [Google Scholar]
  25. Palumbi S. R. 2001; Humans as the World's greatest evolutionary force. Science 293:1786–1790
    [Google Scholar]
  26. Peschel A., Collins L. V. 2001; Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides 22:1651–1659
    [Google Scholar]
  27. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Gotz F. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405–8410
    [Google Scholar]
  28. Peschel A., Jack R. W., Otto M. 9 other authors 2001; Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076
    [Google Scholar]
  29. Podlesek Z., Comino A., Herzog-Velikonja B., Grabnar M. 2000; The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol Lett 188:103–106
    [Google Scholar]
  30. Schroder J.-M. 1999; Epithelial peptide antibiotics. Biochem Pharmacol 57:121–134
    [Google Scholar]
  31. Shafer W. M., Casey S. G., Spitznagel J. K. 1984; Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect Immun 43:834–838
    [Google Scholar]
  32. Shafer W. M., Qu X., Waring A., Lehrer R. I. 1998; Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibiotic peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833
    [Google Scholar]
  33. Stewart F. M., Antia R., Levin B. R., Lipsitch M., Mittler J. E. 1998; The population genetics of antibiotic resistance. II. Analytical theory for sustained populations of bacteria in a community of hosts. Theor Popul Biol 53:152–165
    [Google Scholar]
  34. Tenover F. C. 2001; Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 33 :Suppl. 3S108–115
    [Google Scholar]
  35. Thevissen K., Osborn R. W., Acland D. P., Broekaert W. F. 2000; Specific binding sites for an antifungal plant defensin from Dahlia ( Dahlia merckii ) on fungal cells are required for antifungal activity. Mol Plant–Microbe Interact 13:54–61
    [Google Scholar]
  36. Zasloff M. 2002; Antimicrobial peptides of multicellular organisms. Nature 415:389–395
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26265-0
Loading
/content/journal/micro/10.1099/mic.0.26265-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error