1887

Abstract

The effect of EDTA on serovar Typhimurium was studied in different growth phases with cells grown with or without Ca and Mg supplementation. EDTA affected the outer membrane much more strongly in the early exponential phase than in the mid- or late exponential phase, as indicated by uptake of 1--phenylnaphthylamine (a nonpolar hydrophobic probe, 219), and detergent (SDS) susceptibility. This effect was, however, not paralleled by LPS release (determined by measuring LPS-specific fatty acids or C-labelled LPS in cell-free supernatants, per a standardized cell density), which remained unchanged as a function of the growth curve. The conclusion from these results is that in the early exponential phase the effect of EDTA in involves a component that is independent of LPS release.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26312-0
2003-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492015.html?itemId=/content/journal/micro/10.1099/mic.0.26312-0&mimeType=html&fmt=ahah

References

  1. Alakomi H.-L., Skyttä E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. M. 2000; Lactic acid permeabilizes gram-negative bacteria by distrupting the outer membrane. Appl Environ Microbiol 66:2001–2005
    [Google Scholar]
  2. Finch J. E., Brown R. W. 1975; The influence of nutrient limitation in a chemostat on the sensitivity of Pseudomonas aeruginosa to polymyxin and to EDTA. J Antimicrob Chemother 1:379–386
    [Google Scholar]
  3. Helander I. M., Mattila-Sandholm T. 2000; Fluorometric assessment of Gram-negative bacterial permeabilization. J Appl Microbiol 88:213–219
    [Google Scholar]
  4. Helander I. M., Mäkelä P. H., Westphal O., Rietschel E. T. 1996; Lipopolysaccharides. In Encyclopedia of Molecular Biology and Molecular Medicine vol. 3 pp 462–471 Edited by Meyers R. A. Weinheim: VCH;
    [Google Scholar]
  5. Helander I. M., Alakomi H.-L., Latva-Kala K., Koski P. 1997a; Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology 143:3193–3199
    [Google Scholar]
  6. Helander I. M., Kilpeläinen I., Vaara M. 1997b; Phosphate groups in lipopolysaccharides of Salmonella typhimurium rfaP mutants. FEBS Lett 409:457–460
    [Google Scholar]
  7. Helander I. M., Alakomi H.-L., Latva-Kala K., Mattila-Sandholm T., Pol I., Gorris L. G. M., von Wright A. 1998; Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46:3590–3595
    [Google Scholar]
  8. Hukari R., Helander I. M., Vaara M. 1986; Chain length heterogeneity of lipopolysaccharide released from Salmonella typhimurium by ethylenediaminetetraacetic acid or polycations. Eur J Biochem 154:673–676
    [Google Scholar]
  9. Kanipest M. I., Lin S., Cotters R. J., Raetz C. R. H. 2001; Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-d- manno -octulosonic acid moiety of Escherichia coli lipopolysaccharide. J Biol Chem 276:1156–1163
    [Google Scholar]
  10. Kotra L. P., Amro N. A., Liu G.-Y., Mobashery S. 2000; Visualizing bacteria at high resolution. ASM News 66:675–681
    [Google Scholar]
  11. Leive L. 1965; Release of lipopolysaccharide by EDTA treatment of E. coli . Biochem Biophys Res Commun 21:290–296
    [Google Scholar]
  12. Leive L. 1974; The barrier function of gram-negative envelope. Ann N Y Acad Sci 235:109–127
    [Google Scholar]
  13. Loh B., Grant C., Hancock R. E. W. 1984; Use of the fluorescent probe 1- N -phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginos a. Antimicrob Agents Chemother 26:546–551
    [Google Scholar]
  14. Nikaido H. 1989; Outer membrane barrier as a mechanisms of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836
    [Google Scholar]
  15. Nikaido H. others 1996; Outer membrane. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology vol. 1 pp 29–47 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Raetz C. R. H., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700
    [Google Scholar]
  17. Träuble H., Overath P. 1973; The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transition. Biochim Biophys Acta 307:491–512
    [Google Scholar]
  18. Vaara M. 1992; Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411
    [Google Scholar]
  19. Vaara M. 1999; Lipopolysaccharide and the permeability of the bacterial outer membrane. In Endotoxin in Health and Disease pp 31–38 Edited by Brade H., Opal S. M., Vogel S. N., Morrison D. C. New York & Basel: Marcel Dekker;
    [Google Scholar]
  20. Yethon J. A., Whitfield C. 2001a; Lipopolysaccharide as a target for the development of novel therapeutics in gram-negative bacteria. Curr Drug Targets Infect Disord 1:91–106
    [Google Scholar]
  21. Yethon J. A., Whitfield C. 2001b; Purification and characterization of WaaP from Escherichia coli , a lipopolysaccharide kinase essential for outer membrane stability. J Biol Chem 276:5498–5504
    [Google Scholar]
  22. Yethon J. A., Heinrichs D. E., Monteiro M. A., Perry M. B., Whitfield C. 1998; Involvement of WaaY, WaaQ, and WaaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273:26310–26316
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26312-0
Loading
/content/journal/micro/10.1099/mic.0.26312-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error