1887

Abstract

The methylotrophic yeast exhibits -formylglutathione hydrolase activity (FGH, EC 3.1.2.12), which is involved in the glutathione-dependent formaldehyde oxidation pathway during growth on methanol as the sole carbon source. The structural gene, , was cloned from , and its predicted amino acid sequence showed more than 60 % similarity to those of FGHs from and , and human esterase D. FGH from contained a C-terminal tripeptide, SKL, which is a type I peroxisome-targeting signal, and a bimodal distribution of FGH between peroxisomes and the cytosol was demonstrated. The gene was disrupted in the genome by one-step gene disruption. The Δ strain was still able to grow on methanol as a carbon source under methanol-limited chemostat conditions with low dilution rates (<0·05 h), conditions under which a strain with disruption of the gene for formaldehyde dehydrogenase (another enzyme involved in the formaldehyde oxidation pathway) could not survive. These results suggested that FGH is not essential but necessary for optimal growth on methanol. This is believed to be the first report of detailed analyses of the gene in a methylotrophic yeast strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26320-0
2003-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1491971.html?itemId=/content/journal/micro/10.1099/mic.0.26320-0&mimeType=html&fmt=ahah

References

  1. Cryer D. R., Eccleshal R., Murmur J. 1975; Isolation of yeast DNA. Methods Cell Biol 12:39–44
    [Google Scholar]
  2. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K. 1993; Relationship between sequence conservation and three-dimensional structure in a large family of esterase, lipase, and related proteins. Protein Sci 2:366–382
    [Google Scholar]
  3. Davis R. W., Thomas M., Cameron J., John T. P. S., Scherer S., Padgett R. A. 1980; Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol 65:404–411
    [Google Scholar]
  4. Degrassi G., Uotila L., Klima R., Venturi V. 1999; Purification and properties of an esterase from the yeast Saccharomyces cerevisiae and identification of the encoding gene. Appl Environ Microbiol 65:3470–3472
    [Google Scholar]
  5. Derewenda Z. S. 1994; Structure and function of lipase. Adv Protein Chem 45:1–52
    [Google Scholar]
  6. Eiberg H., Mohr J. 1986; Identity of the polymorphisms for esterase D and S -formylglutathione hydrolase in red blood cells. Hum Genet 139:913–920
    [Google Scholar]
  7. Elgersma Y., Vos A., van den Berg M., van Roermund C. W. T., van der Sluijs P., Distel B., Tabak H. F. 1996; Analysis of the carboxy-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae . J Biol Chem 271:26375–26382
    [Google Scholar]
  8. Fernandez L., Beerthuyzen M. M., Brown J., Siezen R. J., Coolbear T., Holland R., Kuipers O. P. 2000; Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis . Appl Environ Microbiol 66:1360–1368
    [Google Scholar]
  9. Gellissen G. 2000; Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750
    [Google Scholar]
  10. Harms N., Ras J., Reijnders W. N., van Spanning R. J. M., Stouthamer A. H. 1996; S -Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification?. J Bacteriol 178:6296–6299
    [Google Scholar]
  11. Haslam R., Rust S., Pallett K., Cole D., Coleman J. 2002; Cloning and characterisation of S -formylglutathione hydrolase from Arabidopsis thaliana : a pathway for formaldehyde detoxification. Plant Physiol Biochem 40:281–288
    [Google Scholar]
  12. Horiguchi H., Yurimoto H., Kato N., Sakai Y. 2001a; Antioxidant system within yeast peroxisome: biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii . J Biol Chem 276:14279–14288
    [Google Scholar]
  13. Horiguchi H., Yurimoto H., Goh T.-K., Nakagawa T., Kato N., Sakai Y. 2001b; Peroxisomal catalase in the methylotrophic yeast Candida boidinii : transport efficiency and metabolic significance. J Bacteriol 183:6372–6383
    [Google Scholar]
  14. Kato N., Sakazawa C., Nishizawa T., Tani Y., Yamada H. 1980; Purification and characterization of S -formylglutathione hydrolase from a methylotrophic yeast, Kloeckera sp. No. 2201. Biochim Biophys Acta 611:323–332
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Lee B., Yurimoto H., Sakai Y., Kato N. 2002; Physiological role of the glutathione-dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii . Microbiology 148:2697–2704
    [Google Scholar]
  17. Neben I., Sahm H., Kula M.-R. 1980; Studies on an enzyme, S -formylglutathione hydrolase, of the dissimilatory pathway of methanol in Candida boidinii . Biochim Biophys Acta 614:81–91
    [Google Scholar]
  18. Nishikawa M., Hagishita T., Yurimoto H., Kato N., Sakai Y., Hatanaka T. 2000; Primary structure and expression of peroxisomal acetylspermidine oxidase in the methylotrophic yeast Candida boidinii . FEBS Lett 476:150–154
    [Google Scholar]
  19. Sakai Y., Tani Y. 1992; Directed mutagenesis in an asporogenous methylotrophic yeast: cloning, sequencing, and one-step gene disruption of the 3-isopropylmalate dehydrogenase gene ( LEU2 ) of Candida boidinii to derive doubly auxotrophic marker strains. J Bacteriol 174:5988–5993
    [Google Scholar]
  20. Sakai Y., Kazarimoto T., Tani Y. 1991; Transformation system for an asporogenous methylotrophic yeast, Candida boidinii : cloning of the orotidine-5′-phosphate decarboxylase gene ( URA3 ), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J Bacteriol 173:7458–7463
    [Google Scholar]
  21. Sakai Y., Goh T. K., Tani Y. 1993; High-frequency transformation of a methylotropic yeast, Candida boidinii , with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae . J Bacteriol 175:3556–3562
    [Google Scholar]
  22. Sakai Y., Saigannji A., Yurimoto H., Takabe K., Saiki H., Kato N. 1996; The absence of Pmp47, a putative yeast peroxisomal transporter, causes a defect in transport and folding of a specific matrix enzyme. J Cell Biol 134:37–51
    [Google Scholar]
  23. Sakai Y., Murdanoto A. P., Konishi T., Iwamatsu A., Kato N. 1997; Regulation of the formate dehydrogenase gene, FDH1 , in the methylotrophic yeast Candida boidinii and growth characteristics of an FDH1 -disrupted strain on methanol, methylamine, and choline. J Bacteriol 179:4480–4485
    [Google Scholar]
  24. Sakai Y., Yurimoto H., Matsuo H., Kato N. 1998; Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic yeast Candida boidinii . Yeast 14:1175–1187
    [Google Scholar]
  25. Subramani S. 1998; Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188
    [Google Scholar]
  26. Tani Y., Sakai Y., Yamada H. 1985; Production of formaldehyde by a mutant of methanol yeast, Candida boidinii S2. J Ferment Technol 63:443–449
    [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  28. Ubiyvovk V. M., Nazarko T. Y., Stasyk O. G., Sohn M. J., Kang H. A., Sibirny A. A. 2002; GSH2 , a gene encoding γ-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha . FEMS Yeast Res 2:327–332
    [Google Scholar]
  29. Uotila L., Koivusalo M. 1974; Purification and properties of S -formylglutathione hydrolase from human liver. J Biol Chem 279:7664–7672
    [Google Scholar]
  30. Yurimoto H., Hasegawa T., Sakai Y., Kato N. 2000a; Physiological role of the d-amino acid oxidase gene, DAO1 , in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii . Yeast 16:1217–1227
    [Google Scholar]
  31. Yurimoto H., Komeda T., Lim C. R., Nakagawa T., Kondo K., Kato N., Sakai Y. 2000b; Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii . Biochim Biophys Acta 149356–63
    [Google Scholar]
  32. Yurimoto H., Sakai Y., Kato N. 2002; Methanol metabolism. In Hansenula polymorpha Biology and Applications pp 61–75 Edited by Gellissen G. Weinheim: Wiley-VCH;
    [Google Scholar]
  33. Zwart K., Veenhuis M., van Dijken J. P., Harder W. 1980; Development of amine oxidase containing peroxisomes in yeasts during growth of glucose in the presence of methylamine as the nitrogen source. Arch Microbiol 126:117–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26320-0
Loading
/content/journal/micro/10.1099/mic.0.26320-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error