1887

Abstract

The hindguts of wood-feeding termites are the sites of intense, CO-reductive acetogenesis. This activity profoundly influences host nutrition and methane emissions. Homoacetogens previously isolated from diverse termites comprised novel taxa belonging to two distinct bacterial phyla, and . Little else is known about either the diversity or abundance of homoacetogenic species present in any given termite or the genetic details underlying CO-reductive acetogenesis by . A key enzyme of CO-reductive acetogenesis is formyltetrahydrofolate synthetase (FTHFS). A previously designed primer set was used to amplify FTHFS genes from three isolated termite-gut spirochaetes. Sequencing DNA flanking the FTHFS gene of strain ZAS-2 revealed genes encoding two acetogenesis-related enzymes, methenyltetrahydrofolate cyclohydrolase and methylenetetrahydrofolate dehydrogenase. Although termite-gut spirochaetes are only distantly related to clostridia at the ribosomal level, their tetrahydrofolate-dependent enzymes appear to be closely related. In contrast, homologous proteins identified in the non-homoacetogenic oral spirochaete were only distantly related to those from clostridia and the termite-gut treponemes. Having demonstrated their utility with spirochaete pure cultures, the FTHFS primers were used to construct a 91-clone library from the termite-gut community DNA. From this, 19 DNA and eight amino acid FTHFS types were identified. Over 75 % of the retrieved clones formed a novel, coherent cluster with the FTHFS homologues obtained from the termite-gut treponemes. Thus, FTHFS gene diversity in the gut of the termite appears to be dominated by spirochaetes. The homoacetogenic capacity of termite-gut spirochaetes may have been acquired via lateral gene transfer from clostridia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26351-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492529.html?itemId=/content/journal/micro/10.1099/mic.0.26351-0&mimeType=html&fmt=ahah

References

  1. Bao Q., Tian Y., Li W. 18 other authors 2002; A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700
    [Google Scholar]
  2. Boga H. I., Ludwig W., Brune A. 2003; Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–1404
    [Google Scholar]
  3. Brauman A., Kane M. D., Labat M., Breznak J. A. 1992; Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387
    [Google Scholar]
  4. Breznak J. A. 1994; Acetogenesis from carbon dioxide in termite guts. In Acetogenesis pp 303–330 Edited by Drake H. L. New York: Chapman & Hall;
    [Google Scholar]
  5. Breznak J. A., Leadbetter J. R. 2002; Termite gut spirochetes. In The Prokaryotes an Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  6. Breznak J. A., Switzer J. M. 1986; Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630
    [Google Scholar]
  7. Breznak J. A., Switzer J. M., Seitz H. J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288
    [Google Scholar]
  8. Brune A., Friedrich M. 2000; Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269
    [Google Scholar]
  9. Casjens S., Palmer N., van Vugt R. 12 other authors 2000; A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi . Mol Microbiol 35:490–516
    [Google Scholar]
  10. Drake H. L., Daniel S. L., Küsel K., Matthies C., Kuhner C., Braus-Stromeyer S. 1997; Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?. Biofactors 6:13–24
    [Google Scholar]
  11. Eisen J. A., Nelson K. E., Paulsen I. T. 32 other authors 2002; The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99:9509–9514
    [Google Scholar]
  12. Ferretti J. J., McShan W. M., Ajdic D. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A 98:4658–4663
    [Google Scholar]
  13. Fraser C. M., Norris S. J., Weinstock G. M. 30 other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochete. Science 281:375–388
    [Google Scholar]
  14. Goldman N., Whelan S. 2000; Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17:975–978
    [Google Scholar]
  15. Goodner B., Hinkle G., Gattung S. 28 other authors 2001; Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328
    [Google Scholar]
  16. Kane M. D., Breznak J. A. 1991; Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis . Arch Microbiol 156:91–98
    [Google Scholar]
  17. Kane M. D., Brauman A., Breznak J. A. 1991; Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus . Arch Microbiol 156:99–104
    [Google Scholar]
  18. Kapatral V., Anderson I., Ivanova N. 22 other authors 2002; Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184:2005–2018
    [Google Scholar]
  19. Kuroda M., Ohta T., Uchiyama I. 34 other authors 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240
    [Google Scholar]
  20. Leadbetter J. R., Schmidt T. M., Graber J. R., Breznak J. A. 1999; Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689
    [Google Scholar]
  21. Leaphart A. B., Lovell C. R. 2001; Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395
    [Google Scholar]
  22. Leaphart A. B., Friez M. J., Lovell C. R. 2003; Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol 69:693–696
    [Google Scholar]
  23. Liesack W., Bak F., Kreft J. U., Stackebrandt E. 1994; Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90
    [Google Scholar]
  24. Lilburn T. G., Schmidt T. M., Breznak J. A. 1999; Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345
    [Google Scholar]
  25. Lilburn T. G., Kim K. S., Ostrom N. E., Byzek K. R., Leadbetter J. R., Breznak J. A. 2001; Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498
    [Google Scholar]
  26. Lovell C. R., Przybyla A., Ljungdahl L. G. 1988; Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch Microbiol 149:280–285
    [Google Scholar]
  27. Ng W.-L., Schummer M., Cirisano F. D., Baldwin R. L., Karlan B. Y., Hood L. 1996; High-throughput plasmid mini preparations facilitated by micro-mixing. Nucleic Acids Res 24:5045–5047
    [Google Scholar]
  28. Nolling J., Breton G., Omelchenko M. V. 16 other authors 2001; Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum . J Bacteriol 183:4823–4838
    [Google Scholar]
  29. Odelson D. A., Breznak J. A. 1983; Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613
    [Google Scholar]
  30. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  31. Paster B. J., Dewhirst F. E., Cooke S. M., Fussing V., Poulsen L. K., Breznak J. A. 1996; Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352
    [Google Scholar]
  32. Purdy K., Embley T., Takii S., Nedwell D. 1996; Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl Environ Microbiol 62:3905–3907
    [Google Scholar]
  33. Radfar R., Shin R., Sheldrick G. M., Minor W., Lovell C. R., Odom J. D., Dunlap R. B., Lebioda L. 2000a; The crystal structure of N 10-formyltetrahydrofolate synthetase from Moorella thermoacetica . Biochemistry 39:3920–3926
    [Google Scholar]
  34. Radfar R., Leaphart A., Brewer J. M., Minor W., Odom J. D., Dunlap R. B., Lovell C. R., Lebioda L. 2000b; Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N 10-formyltetrahydrofolate synthetase from Moorella thermoacetica . Biochemistry 39:14481–14486
    [Google Scholar]
  35. Ragsdale S. W. 1997; The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6:3–11
    [Google Scholar]
  36. Raponi M., Dawes I. W., Arndt G. M. 2000; Characterization of flanking sequences using long inverse PCR. Biotechniques 28:838–844
    [Google Scholar]
  37. Ruepp A., Graml W., Santos-Martinez M. L. 7 other authors 2000; The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum . Nature 407:508–513
    [Google Scholar]
  38. Schink B., Thiemann V., Laue H., Friedrich M. W. 2002; Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 177:381–391
    [Google Scholar]
  39. Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. 2002; tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504
    [Google Scholar]
  40. Schöniger M., von Haeseler A. 1999; Toward assigning helical regions in alignments of ribosomal RNA and testing the appropriateness of evolutionary models. J Mol Evol 49:691–698
    [Google Scholar]
  41. Shimizu T., Ohtani K., Hirakawa H. 7 other authors 2002; Complete genome sequence of Clostridium perfringens , an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001
    [Google Scholar]
  42. Tholen A., Brune A. 2000; Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes . Environ Microbiol 2:436–449
    [Google Scholar]
  43. White O., Eisen J. A., Heidelberg J. F. 29 other authors 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577
    [Google Scholar]
  44. Wood H. G. 1991; Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163
    [Google Scholar]
  45. Wood D. W., Setubal J. C., Kaul R. 48 other authors 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26351-0
Loading
/content/journal/micro/10.1099/mic.0.26351-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error