1887

Abstract

Treatment of bacterial cultures with chelating agents such as 2,2′-dipyridyl (DPD) induces expression of iron-regulated genes. It is known that in the -, the Fur protein is the major regulator of genes encoding haem- or haemoglobin-binding proteins. Electrophoretic analysis of outer-membrane proteins of the -proteobacterium has revealed the induction of two proteins of 60 and 40 kDa in DPD-treated cultures in both wild-type and -defective strains. These two proteins have the same N-terminal amino acid sequence, which identifies this protein as the product of the PM0592 ORF. Analysis of the sequence of this ORF, which encodes a protein of 60 kDa, revealed the presence of a hexanucleotide (AAAAAA) at which a programmed translational frameshift can occur giving rise to a 40 kDa protein. Analyses conducted in , using the complete PM0592 ORF and a derivative truncated at the hexanucleotide position, have shown that both polypeptides bind haemin. For this reason, the PM0592 ORF product has been designated HbpA (for aemin-inding rotein). Expression studies using both RT-PCR and fusions, as well as electrophoretic profiles of outer-membrane protein composition, have demonstrated that the gene is negatively regulated by iron, manganese and haemin through a -independent pathway. Despite the fact that serum of mice infected with contained antibodies that reacted with both the 60 and 40 kDa products of the gene, these proteins did not offer protection when used in immunization assays against this micro-organism.

Keyword(s): DPD, 2,2′-dipyridyl
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26370-0
2003-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492273.html?itemId=/content/journal/micro/10.1099/mic.0.26370-0&mimeType=html&fmt=ahah

References

  1. Baranov P. V., Gesteland R. F., Atkins J. F. 2002; Recoding: translational bifurcations in gene expression. Gene 286:187–201
    [Google Scholar]
  2. Bosch M., Tarragó R., Garrido E., Campoy S., Fernández de Henestrosa A. R., Pérez de Rozas A. M., Badiola I., Barbé J. 2001; Expression of the Pasteurella multocida ompH gene is negatively regulated by the Fur protein. FEMS Microbiol Lett 203:35–40
    [Google Scholar]
  3. Bosch M., Garrido E., Llagostera M., Pérez de Rozas A. M., Badiola I., Barbé J. 2002a; Pasteurella multocida exbB , exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiol Lett 210:201–208
    [Google Scholar]
  4. Bosch M., Garrido E., Llagostera M., Pérez de Rozas A. M., Badiola I., Barbé J. 2002b; Characterization of the Pasteurella multocida hgbA gene encoding a hemoglobin-binding protein. Infect Immun 70:5955–5964
    [Google Scholar]
  5. Boyer E., Bergevin I., Malo D., Gros P., Cellier M. F. 2002; Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042
    [Google Scholar]
  6. Braun V. 1995; Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307
    [Google Scholar]
  7. Bsat N., Herbig A., Casillas-Martínez L., Setlow P., Heimann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198
    [Google Scholar]
  8. Cardenas M., Fernández de Henestrosa A. R., Campoy S., Perez de Rozas A., Barbé J., Badiola I., Llagostera M. 2001; Virulence of Pasteurella multocida recA mutants. Vet Microbiol 80:53–61
    [Google Scholar]
  9. Chandler M., Fayet O. 1993; Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7:497–503
    [Google Scholar]
  10. Choi K. K., Maheswaran S. K., Felice L. J., Molitor T. W. 1991; Relationship between the iron regulated outer membrane proteins of in vivo grown Pasteurella multocida . Vet Microbiol 28:75–92
    [Google Scholar]
  11. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X. W., Finlay D. R., Guiney D., Helinski D. R. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  12. Dorman C. J., Smith S. G. 2001; Regulation of virulence gene expression in bacterial pathogenesis. In Principles of Bacterial Pathogenesis pp 75–132 Edited by Groisman E. A. New York: Academic Press;
    [Google Scholar]
  13. Dubrac S., Touati D. 2000; Fur positive regulation of iron superoxide dismutase in Escherichia coli : functional analysis of the sodB promoter. J Bacteriol 182:3802–3808
    [Google Scholar]
  14. Escolar L., Martín J. P., de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229
    [Google Scholar]
  15. Fernandez de Henestrosa A. R., Badiola I., Saco M., Perez de Rozas A. M., Campoy S., Barbé J. 1997; Importance of the galE gene on the virulence of Pasteurella multocida . FEMS Microbiol Lett 154:311–316
    [Google Scholar]
  16. Genco C. A., Odusanya B. M., Brown G. 1994; Binding and accumulation of hemin in Porphyromonas gingivalis are induced by hemin. Infect Immun 62:2885–2892
    [Google Scholar]
  17. Hamza I., Chauhan S., Hassett R., O'Brian M. R. 1998; The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–21674
    [Google Scholar]
  18. Hamza I., Hassett R., O'Brian M. R. 1999; Identification of a functional fur gene in Bradyrhizobium japonicum . J Bacteriol 181:5843–5846
    [Google Scholar]
  19. Hamza I., Qi Z., King N. D., O'Brian M. R. 2000; Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum . Microbiology 146:669–676
    [Google Scholar]
  20. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177
    [Google Scholar]
  21. Henderson D. P., Wyckoff E. E., Rashidi C. E., Verlei H., Oldham A. L. 2001; Characterization of the Plesiomonas shigelloides genes encoding the heme iron utilization system. J Bacteriol 183:2715–2723
    [Google Scholar]
  22. Jordan A., Aragall E., Gibert I., Barbé J. 1996; Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of two class I ribonucleotide reductases present in both bacteria. Mol Microbiol 19:777–790
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Letoffe S., Ghigo J. M., Wandersman C. 1994; Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A 91:9876–9880
    [Google Scholar]
  25. Lewis L. A., Gray E., Wang Y. P., Roe B. A., Dyer D. W. 1997; Molecular characterization of hpuAB , the haemoglobin-haptoglobin utilization operon of Neisseria meningitidis . Mol Microbiol 23:737–749
    [Google Scholar]
  26. Lundrigan M. D., Kadner R. J. 1986; Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli . Homology among outer membrane receptors that interact with TonB. J Biol Chem 261:10797–10801
    [Google Scholar]
  27. May B. J., Zhang Q., Li L. L., Paustian M. L., Whittam T. S., Kapur V. 2001; Complete genomic sequence of Pasteurella multocida , Pm70. Proc Natl Acad Sci U S A 98:3460–3465
    [Google Scholar]
  28. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  29. Mills M., Payne S. M. 1995; Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157 : H7. J Bacteriol 177:3004–3009
    [Google Scholar]
  30. Ochsner U. A., Johnson Z., Vasil M. L. 2000; Genetics and regulation of two distinct haem-uptake systems, phu and has , in Pseudomonas aeruginosa . Microbiology 146:185–198
    [Google Scholar]
  31. Parales R. E., Harwood C. S. 1993; Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for Gram-negative bacteria. Gene 133:23–30
    [Google Scholar]
  32. Patzer S. I., Hantke K. 2001; Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli . J Bacteriol 183:4806–4813
    [Google Scholar]
  33. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941
    [Google Scholar]
  34. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  35. Rosner J. L., Dangi B., Gronenborn A. M., Martín R. G. 2002; Posttranscriptional activation of the transcriptional activator rob by dipyridyl in Escherichia coli . J Bacteriol 184:1407–1416
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  37. Schryvers A., Stojiljkovic I. 1999; Iron acquisition systems in the pathogenic Neisseria . Mol Microbiol 32:1117–1123
    [Google Scholar]
  38. Snipes K. P., Hansen L. M., Hirsch D. C. 1988; Plasma and iron-regulated expression of high molecular weight outer membrane proteins by Pasteurella multocida . Am J Vet Res 49:1336–1338
    [Google Scholar]
  39. Staggs T. M., Fetherston J. D., Perry R. D. 1994; Pleiotropic effects of a Yersinia pestis fur mutation. J Bacteriol 176:7614–7624
    [Google Scholar]
  40. Stojiljkovic I., Hantke K. 1992; Hemin uptake system of Yersinia enterocolitica : similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J 11:4359–4367
    [Google Scholar]
  41. Stojiljkovic I., Baumler A., Hantke K. 1994; Fur regulation in Gram-negative bacteria: identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545
    [Google Scholar]
  42. Tapias A., Fernández S., Alonso J. C., Barbé J. 2002; Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 30:1539–1546
    [Google Scholar]
  43. Thompson J. M., Jones H. A., Perry R. D. 1999; Molecular characterization of the hemin uptake locus ( hmu ) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67:3879–3892
    [Google Scholar]
  44. Todd J. D., Wexler M., Sawers G., Yeoman K. H., Poole P. S., Johnston A. W. B. 2002; RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum . Microbiology 148:4059–4071
    [Google Scholar]
  45. van Vliet A. H. M., Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  46. van Vliet A. H. M., Ketley J. M., Park S. F., Penn C. W. 2002; The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol Rev 26:173–186
    [Google Scholar]
  47. Vasil M. L., Ochsner U. A., Johnson Z., Colmer J. A., Hamood A. N. 1998; The Fur-regulated gene encoding the alternative sigma factor PvdS is required for iron-dependent expression of the LysR-type regulator PtxR in Pseudomonas aeruginosa . J Bacteriol 180:6784–6788
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26370-0
Loading
/content/journal/micro/10.1099/mic.0.26370-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error