1887

Abstract

To assess the genetic diversity and genetic relationships of , the causative agent of hazelnut decline, a total of 102 strains, obtained from central Italy (provinces of Viterbo and Rome) and northern Greece, were studied using multilocus enzyme electrophoresis (MLEE). Their allelic variation in 10 loci was determined. All loci were polymorphic and 53 electrophoretic types (ETs) were identified from the total sample. The mean genetic diversity () was 0·65 and this value ranged from 0·37 for the least polymorphic to 0·82 for the most polymorphic locus. The dendrogram originated from MLEE data indicated two main groups of ETs, A and B. The groups do not appear to be correlated to the geographic origin of the strains, although all the ETs from northern Greece clustered into subgroup B1. pv. and pv. , included in the analysis as outgroups, clustered apart. The index of association ( ) for was 0·90. The values were always significantly different from zero for the population subsets studied and no epidemic structure was found. These results would indicate that the population structure of is clonal either in northern Greece or in central Italy. The recent outbreaks of the bacterium in new areas of hazelnut cultivation would explain the current clonal structure that is persisting over decades.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26380-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492891.html?itemId=/content/journal/micro/10.1099/mic.0.26380-0&mimeType=html&fmt=ahah

References

  1. Brown A. H. D., Feldman M. W., Nevo E. 1980; Multilocus structure of natural populations of Hordeum spontaneum . Genetics 96:523–536
    [Google Scholar]
  2. Caugant D. A., Mocca F. L., Frasch C. E., Froholm L. O., Zollinger W. D., Selander R. K. 1987; Genetic structure of Neisseria meningitidis population in relation to serogroups, serotype, and outer membrane protein pattern. J Bacteriol 169:2781–2792
    [Google Scholar]
  3. Cohan F. M. 1994; Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol 9:175–180
    [Google Scholar]
  4. Denny T. P., Gilmour M. N., Selander R. K. 1988; Genetic diversity and relationships of two pathovars of Pseudomonas syringae . J Gen Microbiol 134:1949–1960
    [Google Scholar]
  5. Farfan M., Minana D., Fusté M. C., Lorén J. G. 2000; Genetic relationships between clinical and environmental Vibrio cholerae isolates based on multilocus enzyme electrophoresis. Microbiology 146:2613–2626
    [Google Scholar]
  6. Feizabadi M. M., Robertson I. D., Cousins D. V., Dowson D. J., Hampson D. J. 1997; Use of multilocus enzyme electrophoresis to examine genetic relationships amongst isolates of Mycobacterium intracellulare and related species. Microbiology 143:1461–1469
    [Google Scholar]
  7. Gardan L., Shafik H., Belouin S., Brosch R., Grimont F., Grimont P. A. D. 1999; DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp.nov. and P . cannabina sp. nov. ( ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478
    [Google Scholar]
  8. Go M. F., Kapen V., Graham D. Y., Musser J. M. 1996; Population genetic analysis of Helicobater pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J Bacteriol 178:3934–3938
    [Google Scholar]
  9. Janse J. D., Rossi M. P., Angelucci L., Scortichini M., Derks J. H. J., Akkermans A. D. L., De Vrijer R., Psallidas P. G. 1996; Reclassification of Pseudomonas syringae pv.avellanae as Pseudomonas avellanae (sp. nov.), the bacterium causing canker of hazelnut ( Corylus avellana L.). Syst Appl Microbiol 19:589–595
    [Google Scholar]
  10. Johnson W. M., Tyler J. D., Rozee K. R. 1994; Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 19:307–313
    [Google Scholar]
  11. King E. D., Raney M. K., Ward D. R. 1954; Two simple media for the demonstration of pyocianin and fluorescin. J Lab Clin Med 44:301–307
    [Google Scholar]
  12. Levin B. R., Bergstrom C. T. 2000; Bacteria are different: observations, interpretations, speculations and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A 97:6981–6985
    [Google Scholar]
  13. Loreti S., Sarrocco S., Gallelli A. 2001; Identification of hrp genes, encoding harpin protein in Pseudomonas avellanae (Psallidas) Janse et al . J Phytopathol 149:219–226
    [Google Scholar]
  14. Loreti S., Gallelli A. 2002; Rapid and specific detection of virulent Pseudomonas avellanae strains by PCR amplification. Eur J Plant Pathol 108:237–244
    [Google Scholar]
  15. Maynard Smith J., Smith N. H., O'Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A 90:4384–4388
    [Google Scholar]
  16. Maynard Smith J., Feil E. J., Smith N. H. 2000; Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22:1115–1122
    [Google Scholar]
  17. Nei M. 1978; Estimation of average heterozygosity and genetic distance from a small sample of individuals. Genetics 89:583–590
    [Google Scholar]
  18. Psallidas P. G. 1987; The problem of bacterial canker of hazelnut in Greece caused by Pseudomonas syringae pv . avellanae . Bulletin OEPP 17:257–261
    [Google Scholar]
  19. Psallidas P. G., Panagopoulos C. G. 1979; A bacterial canker of hazelnut in Greece caused by Pseudomonas syringae pv. avellanae . Phytopathol Z 94:103–111
    [Google Scholar]
  20. Rius N., Fusté M. C., Guasp C., Lalucat J., Lorén J. G. 2001; Clonal population structure of Pseudomonas stutzeri , a species with exceptional genetic diversity. J Bacteriol 183:736–744
    [Google Scholar]
  21. Rohlf F. J. 1993 Numerical taxonomy and multivariate analysis system, version 1.80 New York: Exeter Software;
    [Google Scholar]
  22. Rossellò R., Garcia-Valdes E., Lalucat J., Ursing J. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri . Syst Appl Microbiol 13:150–157
    [Google Scholar]
  23. Scortichini M. 2002; Bacterial canker and decline of European hazelnut. Plant Disease 86:704–709
    [Google Scholar]
  24. Scortichini M., Marchesi U. 2001; Sensitive and specific detection of Pseudomonas avellanae using primers based on 16S rRNA gene sequence. J Phytopathol 149:527–532
    [Google Scholar]
  25. Scortichini M., Dettori M. T., Marchesi U., Palombi M. A., Rossi M. P. 1998; Differentiation of Pseudomonas avellanae strains from Greece and Italy by rep-PCR genomic fingerprinting. J Phytopathol 146:417–420
    [Google Scholar]
  26. Scortichini M., Marchesi U., Rossi M. P., Angelucci L., Dettori M. T. 2000; Rapid identification of Pseudomonas avellanae field isolates, causing hazelnut decline in central Italy, by repetitive PCR genomic fingerprinting. J Phytopathol 148:153–159
    [Google Scholar]
  27. Scortichini M., Marchesi U., Di Prospero P. 2002a; Genetic relatedness among Pseudomonas avellanae , P. syringae pv.theae and P.s . pv. actinidiae , and their identification. Eur J Plant Pathol 108:269–278
    [Google Scholar]
  28. Scortichini M., Marchesi U., Rossi M. P., Di Prospero P. 2002b; Bacteria associated with hazelnut ( Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae. Appl Environ Microbiol 68:476–484
    [Google Scholar]
  29. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. J. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  30. Selander R. K., Betran P., Smith N. H. 7 other authors 1990; Evolutionary genetic relationship of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58:2262–2275
    [Google Scholar]
  31. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy San Francisco: Freeman;
    [Google Scholar]
  32. Sokal R. R., Rohlf F. J. 1981 Biometry New York: Freeman;
    [Google Scholar]
  33. Souza V., Nguyen T. T., Hudson R. R., Pinero D., Lenski R. E. 1992; Hierarchical analysis of linkage disequilibrium in Rhizobium population: evidence for sex?. Proc Natl Acad Sci U S A 89:8389–8393
    [Google Scholar]
  34. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  35. Whittam T. S. 1992; Sex in soil. Curr Biol 2:676–678
    [Google Scholar]
  36. Whittam T. J., Ochman H., Selander R. K. 1983; Geographic component of linkage disequilibrium in natural population of Escherichia coli . Mol Biol Evol 1:67–83
    [Google Scholar]
  37. Wise H. G., Shimkets L. J., McArthur J. V. 1995; Genetic structure of a lotic population of Burkholderia ( Pseudomonas ) cepacia . Appl Environ Microbiol 61:1791–1798
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26380-0
Loading
/content/journal/micro/10.1099/mic.0.26380-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error