1887

Abstract

, the obligate bacterial endosymbiont of the tsetse fly , is characterized by extreme genome reduction and AT nucleotide composition bias. Here, multivariate statistical analyses are used to test the hypothesis that mutational bias and genetic drift shape synonymous codon usage and amino acid usage of . The results show that synonymous codon usage patterns vary little across the genome and do not distinguish genes of putative high and low expression levels, thus indicating a lack of translational selection. Extreme AT composition bias across the genome also drives relative amino acid usage, but predicted high-expression genes (ribosomal proteins and chaperonins) use GC-rich amino acids more frequently than do low-expression genes. The levels and configuration of amino acid differences between and were compared to test the hypothesis that the relatively GC-rich amino acid profiles of high-expression genes reflect greater amino acid conservation at these loci. This hypothesis is supported by reduced levels of protein divergence at predicted high-expression genes and similar configurations of amino acid changes across expression categories. Combined, the results suggest that codon and amino acid usage in the genome reflect a strong AT mutational bias and elevated levels of genetic drift, consistent with expected effects of an endosymbiotic lifestyle and repeated population bottlenecks. However, these impacts of mutation and drift are apparently attenuated by selection on amino acid composition at high-expression genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26381-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492585.html?itemId=/content/journal/micro/10.1099/mic.0.26381-0&mimeType=html&fmt=ahah

References

  1. Abbot P., Moran N. A. 2002; Extremely low levels of genetic polymorphism in endosymbionts ( Buchnera ) of aphids ( Pemphigus . Mol Ecol 11:2649–2660
    [Google Scholar]
  2. Akashi H. 1994; Synonymous codon usage in Drosophila melanogaster : natural selection and translational accuracy. Genetics 136:927–935
    [Google Scholar]
  3. Akashi H. 1997; Codon bias evolution in Drosophila . Population genetics of mutation-selection drift. Gene 205:269–278
    [Google Scholar]
  4. Akashi H., Gojobori T. 2002; Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . Proc Natl Acad Sci U S A 99:3695–3700
    [Google Scholar]
  5. Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., Aksoy S. 2002; Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia . Nat Genet 32:402–407
    [Google Scholar]
  6. Aksoy S. 1995; Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol 4:23–29
    [Google Scholar]
  7. Andersson S. G., Kurland C. G. 1990; Codon preferences in free-living microorganisms. Microbiol Rev 54:198–210
    [Google Scholar]
  8. Andersson S. G., Sharp P. M. 1996; Codon usage and base composition in Rickettsia prowazekii . J Mol Evol 42:525–536
    [Google Scholar]
  9. Baumann L., Baumann P., Clark M. A. 1996; Levels of Buchnera aphidicola chaperonin groEL during growth of the aphid Schizaphis graminum . Curr Microbiol 32:279–285
    [Google Scholar]
  10. Baumann L., Baumann P., Moran N. A., Sandstrom J., Thao M. L. 1999; Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts ( Buchnera ) of aphids. J Mol Evol 48:77–85
    [Google Scholar]
  11. Bernardi G. 1985; Codon usage and genome composition. J Mol Evol 22:363–365
    [Google Scholar]
  12. Birdsell J. A. 2002; Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197
    [Google Scholar]
  13. Blattner F. R., Plunkett G. I., Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K12. Science 277:1453–1474
    [Google Scholar]
  14. Bulmer M. 1991; The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907
    [Google Scholar]
  15. Charles H., Heddi A., Rahbe Y. 2001; A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae , inferred from phylogenetic analysis based on a heterogeneous model of DNA evolution. C R Acad Sci III 324:489–494
    [Google Scholar]
  16. Clark M. A., Baumann L., Baumann P. 1998; Sequence analysis of a 34·7-kb DNA segment from the genome of Buchnera aphidicola (endosymbiont of aphids) containing groEL , dnaA , the atp operon, gidA , and rho . Curr Microbiol 36:158–163
    [Google Scholar]
  17. Clark M. A., Moran N. A., Baumann P. 1999; Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598
    [Google Scholar]
  18. Clark M. A., Baumann L., Thao M. L., Moran N. A., Baumann P. 2001; Degenerative minimalism in the genome of a psyllid endosymbiont. J Bacteriol 183:1853–1861
    [Google Scholar]
  19. de Miranda A. B., Alvarez-Valin F., Jabbari K., Degrave W. M., Bernardi G. 2000; Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae . J Mol Evol 50:45–55
    [Google Scholar]
  20. D'Onofrio G., Mouchiroud D., Aissani B., Gautier C., Bernardi G. 1991; Correlations between the compositional properties of human genes, codon usage, and amino acid composition of proteins. J Mol Evol 32:504–510
    [Google Scholar]
  21. Foster P. G., Jermiin L. S., Hickey D. A. 1997; Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44:282–288
    [Google Scholar]
  22. Francino M. P., Ochman H. 1999; A comparative genomics approach to DNA asymmetry. Ann N Y Acad Sci 870:428–431
    [Google Scholar]
  23. Funk D. J., Wernegreen J. J., Moran N. A. 2001; Intraspecific variation in symbiont genomes: bottlenecks and the aphid– Buchnera association. Genetics 157:477–489
    [Google Scholar]
  24. Greenacre M. 1984 Theory and Applications of Correspondence Analysis London: Academic Press;
  25. Heddi A., Charles H., Khatchadourian C., Bonnot G., Nardon P. 1998; Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae : a peculiar G+C content of an endocytobiotic DNA. J Mol Evol 47:52–61
    [Google Scholar]
  26. Kreitman M., Antezana M. 1999 The Population and Evolutionary Genetics of Codon Bias Cambridge: Cambridge University Press;
  27. Lafay B., Atherton J. C., Sharp P. M. 2000; Absence of translationally selected synonymous codon usage bias in Helicobacter pylori . Microbiology 146:851–860
    [Google Scholar]
  28. Lai C. Y., Baumann L., Baumann P. 1994; Amplification of trpEG : adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A 91:3819–3823
    [Google Scholar]
  29. Ma W.-C., Denlinger D. L. 1974; Secretory discharge and microflora of milk gland in tsetse flies. Nature 247:301–303
    [Google Scholar]
  30. Maddison D., Maddison W. 2002 MacClade: Analysis of Phylogeny and Character Evolution Sunderland, MA: Sinauer Associates;
  31. McInerney J. O. 1998a; Replicational and transcriptional selection on codon usage in Borrelia burgdorferi . Proc Natl Acad Sci U S A 95:10698–10703
    [Google Scholar]
  32. McInerney J. O. 1998b; GCUA (General Codon Usage Analysis. Bionformatics 14:372–373
    [Google Scholar]
  33. Mira A., Moran N. A. 2002; Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143
    [Google Scholar]
  34. Moran N. A., Wernegreen J. J. 2000; Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326
    [Google Scholar]
  35. Moran N. A., Munson M. A., Baumann P., Ishikawa H. 1993; A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B Biol Sci 253:167–171
    [Google Scholar]
  36. Nogge G. 1981; Significance of symbionts for the maintenance of an optional nutritional state for successful reproduction in hematophagous arthropods. Parasitology 82:101–104
    [Google Scholar]
  37. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86
    [Google Scholar]
  38. Ohama T., Muto A., Osawa S. 1990; The role of GC-biased mutation pressure on synonymous codon choice in Mycoplasma luteus , a bacterium with a high genomic GC-content. Nucleic Acids Res 18:1565–1569
    [Google Scholar]
  39. Palacios C., Wernegreen J. J. 2002; A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high expression genes. Mol Biol Evol 19:1575–1584
    [Google Scholar]
  40. Powell J. R., Moriyama E. N. 1997; Evolution of codon usage bias in Drosophila . Proc Natl Acad Sci U S A 94:7784–7790
    [Google Scholar]
  41. Rocha E. P., Danchin A. 2001; Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol 18:1789–1799
    [Google Scholar]
  42. Sandström J., Moran N. 1999; How nutritionally imbalanced is phloem sap for aphids?. Entomol Exp Appl 91:203–210
    [Google Scholar]
  43. Sharp P. M. 1991; Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium : codon usage, map position, and concerted evolution. J Mol Evol 33:23–33
    [Google Scholar]
  44. Sharp P. M., Li W. H. 1987; The Codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295
    [Google Scholar]
  45. Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. 2000; Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86
    [Google Scholar]
  46. Singer G. A., Hickey D. A. 2000; Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol Biol Evol 17:1581–1588
    [Google Scholar]
  47. Sokal R. R., Rohlf F. J. 1995 Biometry New York: W. H. Freeman;
  48. Srivastava A. K., Schlessinger D. 1990; Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 44:105–129
    [Google Scholar]
  49. Sueoka N. 1961; Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harb Symp Quant Biol 26:35–43
    [Google Scholar]
  50. Swofford D. L. 2002 PAUP *. Phylogenetic Analysis Using Parsimony (* and Other Methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  51. van Ham R. C., Kamerbeek J., Palacios C. 13 other authors 2003; Reductive genome evolution in Buchnera aphidicola . Proc Natl Acad Sci U S A 100:581–586
    [Google Scholar]
  52. Wernegreen J. J., Moran N. A. 1999; Evidence for genetic drift in endosymbionts ( Buchnera ): analyses of protein-coding genes. Mol Biol Evol 16:83–97
    [Google Scholar]
  53. Wernegreen J. J., Moran N. A. 2001; Vertical transmission of biosynthetic plasmids in aphid endosymbionts ( Buchnera . J Bacteriol 183:785–790
    [Google Scholar]
  54. Wernegreen J. J., Ochman H., Jones I. B., Moran N. A. 2000; Decoupling of genome size and sequence divergence in a symbiotic bacterium. J Bacteriol 182:3867–3869
    [Google Scholar]
  55. Wernegreen J., Degnan P., Lazarus A., Palacios C., Bordenstein S. 2003; Genome evolution in an insect cell: distinct features of an ant–bacterial partnership. Biol Bull 204:221–231
    [Google Scholar]
  56. Wright F. 1990; The ‘effective number of codons' used in a gene. Gene 87:23–29
    [Google Scholar]
  57. Yang Z. 2002 Phylogenetic Analysis by Maximum Likelihood ( PAML ), version 3.12 London: University College London;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26381-0
Loading
/content/journal/micro/10.1099/mic.0.26381-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error