1887

Abstract

The complete genome of strain R has been sequenced. The genome is composed of 996 422 bp with an overall G+C content of 31 mol%. It contains 742 putative coding DNA sequences (CDSs), representing a 91 % coding density. Function has been assigned to 469 of the CDSs, while 150 encode conserved hypothetical proteins and 123 remain as unique hypothetical proteins. The genome contains two copies of the rRNA genes and 33 tRNA genes. The origin of replication has been localized based on sequence analysis in the region of the A gene. The family (previously termed pMGA) contains 43 genes distributed among five loci containing 8, 2, 9, 12 and 12 genes. This family of genes constitutes 10·4 % (103 kb) of the total genome. Two CDSs were identified immediately downstream of and encoding proteins that share homology to cytadhesins GapA and CrmA. Based on motif analysis it is predicted that 80 genes encode lipoproteins and 149 proteins contain multiple transmembrane domains. The authors have identified 75 proteins putatively involved in transport of biomolecules, 12 transposases, and a number of potential virulence factors. The completion of this sequence has spawned multiple projects directed at defining the biological basis of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26427-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492307.html?itemId=/content/journal/micro/10.1099/mic.0.26427-0&mimeType=html&fmt=ahah

References

  1. Baker T. A., Wickner S. H. 1992; Genetics and enzymology of DNA replication in Escherichia coli . Annu Rev Genet 26:447–477
    [Google Scholar]
  2. Baseggio N., Glew M. D., Markham P. F., Whithear K. G., Browning G. F. 1996; Size and genomic location of the pMGA multigene family of Mycoplasma gallisepticum . Microbiology 142:1429–1435
    [Google Scholar]
  3. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. 2000; The Pfam protein families database. Nucleic Acids Res 28:263–266
    [Google Scholar]
  4. Boguslavsky S., Menaker D., Lysnyansky I., Liu T., Levisohn S., Rosengarten R., Garcia M., Yogev D. 2000; Molecular characterization of the Mycoplasma gallisepticum pvpA gene which encodes a putative variable cytadhesin protein. Infect Immun 68:3956–3964
    [Google Scholar]
  5. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. 1992; Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89:2002–2006
    [Google Scholar]
  6. Cao T. B., Saier M. H. Jr 2003; The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609115–125
    [Google Scholar]
  7. Chambaud I., Heilig R., Ferris S. 9 other authors 2001; The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis . Nucleic Acids Res 29:2145–2153
    [Google Scholar]
  8. Chen X., Finch L. R. 1989; Novel arrangement of rRNA genes in Mycoplasma gallisepticum : separation of the 16S gene of one set from the 23S and 5S genes. J Bacteriol 171:2876–2878
    [Google Scholar]
  9. Cordova C. M., Lartigue C., Sirand-Pugnet P., Renaudin J., Cunha R. A., Blanchard A. 2002; Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol 184:5426–5435
    [Google Scholar]
  10. Dandekar T., Huynen M., Regula J. T. 10 other authors 2000; Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28:3278–3288
    [Google Scholar]
  11. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with glimmer. Nucleic Acids Res 27:4636–4641
    [Google Scholar]
  12. Driessen A. J., Manting E. H., van der Does C. 2001; The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 8:492–498
    [Google Scholar]
  13. Elgavish S., Shaanan B. 1997; Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci 22:462–467
    [Google Scholar]
  14. el-Mabrouk N., Lisacek F. 1996; Very fast identification of RNA motifs in genomic DNA. Application to tRNA search in the yeast genome. J Mol Biol 264:46–55
    [Google Scholar]
  15. Escolar L., Perez-Martin J., de Lorenzo V. 1998; Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283:537–547
    [Google Scholar]
  16. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194
    [Google Scholar]
  17. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185
    [Google Scholar]
  18. Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C. J., Hofmann K., Bairoch A. 2002; The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238
    [Google Scholar]
  19. Fraser C. M., Gocayne J. D., White O. 26 other authors 1995; The minimal gene complement of Mycoplasma genitalium . Science 270:397–403
    [Google Scholar]
  20. Glass J. I., Lefkowitz E. J., Glass J. S., Heiner C. R., Chen E. Y., Cassell G. H. 2000; The complete sequence of the mucosal pathogen Ureaplasma urealyticum . Nature 407:757–762
    [Google Scholar]
  21. Glew M. D., Markham P. F., Browning G. F., Walker I. D. 1995; Expression studies on four members of the pMGA multigene family in Mycoplasma gallisepticum S6. Microbiology 141:3005–3014
    [Google Scholar]
  22. Glew M. D., Baseggio N., Markham P. F., Browning G. F., Walker I. D. 1998; Expression of the pMGA genes of Mycoplasma gallisepticum is controlled by variation in the GAA trinucleotide repeat lengths within the 5′ noncoding regions. Infect Immun 66:5833–5841
    [Google Scholar]
  23. Glew M. D., Browning G. F., Markham P. F., Walker I. D. 2000; pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun 68:6027–6033
    [Google Scholar]
  24. Goh M. S., Gorton T. S., Forsyth M. H., Troy K. E., Geary S. J. 1998; Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin (GapA). Microbiology 144:2971–2978
    [Google Scholar]
  25. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    [Google Scholar]
  26. Gorton T. S., Geary S. J. 1997; Antibody-mediated selection of a Mycoplasma gallisepticum phenotype expressing variable proteins. FEMS Microbiol Lett 155:31–38
    [Google Scholar]
  27. Gorton T. S., Goh M. S., Geary S. J. 1995; Physical mapping of the Mycoplasma gallisepticum S6 genome with localization of selected genes. J Bacteriol 177:259–263
    [Google Scholar]
  28. Hempstead P. G. 1990; An improved method for the rapid isolation of chromosomal DNA from Mycoplasma spp. Can J Microbiol 36:59–61
    [Google Scholar]
  29. Henikoff S., Henikoff J. G., Pietrokovski S. 1999; Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15:471–479
    [Google Scholar]
  30. Hilbert H., Himmelreich R., Plagens H., Herrmann R. 1996; Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res 24:628–639
    [Google Scholar]
  31. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res 24:4420–4449
    [Google Scholar]
  32. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 347:166–173
    [Google Scholar]
  33. Huang X., Madan A. 1999; CAP3: a DNA sequence assembly program. Genome Res 9:868–877
    [Google Scholar]
  34. Hutchison C. A., Peterson S. N., Gill S. R., Cline R. T., White O., Fraser C. M., Smith H. O., Venter J. C. 1999; Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169
    [Google Scholar]
  35. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049
    [Google Scholar]
  36. Krause D. C. 1998; Mycoplasma pneumoniae cytadherence: organization and assembly of the attachment organelle. Trends Microbiol 6:15–18
    [Google Scholar]
  37. Krause D. C., Balish M. F. 2001; Structure, function, and assembly of the terminal organelle of Mycoplasma pneumoniae . FEMS Microbiol Lett 198:1–7
    [Google Scholar]
  38. Krause D. C., Leith D. K., Wilson R. M., Baseman J. B. 1982; Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 35:809–817
    [Google Scholar]
  39. Layh-Schmitt G., Harkenthal M. 1999; The 40- and 90-kDa membrane proteins (ORF6 gene product) of Mycoplasma pneumoniae are responsible for the tip structure formation and P1 (adhesin) association with the Triton shell. FEMS Microbiol Lett 174:143–149
    [Google Scholar]
  40. Levisohn S., Rosengarten R., Yogev D. 1995; In vivo variation of Mycoplasma gallisepticum antigen expression in experimentally infected chickens. Vet Microbiol 45:219–231
    [Google Scholar]
  41. Liu L., Payne D. M., van Santen V. L., Dybvig K., Panangala V. S. 1998; A protein (M9) associated with monoclonal antibody-mediated agglutination of Mycoplasma gallisepticum is a member of the pMGA family. Infect Immun 66:5570–5575
    [Google Scholar]
  42. Liu L., Dybvig K., Panangala V. S., van Santen V. L., French C. T. 2000; GAA trinucleotide repeat region regulates M9/pMGA gene expression in Mycoplasma gallisepticum . Infect Immun 68:871–876
    [Google Scholar]
  43. Liu T., Garcia M., Levisohn S., Yogev D., Kleven S. H. 2001; Molecular variability of the adhesin-encoding gene pvpA among Mycoplasma gallisepticum strains and its application in diagnosis. J Clin Microbiol 39:1882–1888
    [Google Scholar]
  44. Loris R., Hamelryck T., Bouckaert J., Wyns L. 1998; Legume lectin structure. Biochim Biophys Acta 1383:9–36
    [Google Scholar]
  45. Markham P. F., Glew M. D., Whithear K. G., Walker I. D. 1993; Molecular cloning of a member of the gene family that encodes pMGA, a hemagglutinin of Mycoplasma gallisepticum . Infect Immun 61:903–909
    [Google Scholar]
  46. Markham P. F., Glew M. D., Sykes J. E., Bowden T. R., Pollocks T. D., Browning G. F., Whithear K. G., Walker I. D. 1994; The organisation of the multigene family which encodes the major cell surface protein, pMGA, of Mycoplasma gallisepticum . FEBS Lett 352:347–352
    [Google Scholar]
  47. Markham P. F., Glew M. D., Browning G. F., Whithear K. G., Walker I. D. 1998; Expression of two members of the pMGA gene family of Mycoplasma gallisepticum oscillates and is influenced by pMGA-specific antibodies. Infect Immun 66:2845–2853
    [Google Scholar]
  48. Morowitz H. J. 1984; The completeness of molecular biology. Isr J Med Sci 20:750–753
    [Google Scholar]
  49. Much P., Winner F., Stipkovits L., Rosengarten R., Citti C. 2002; Mycoplasma gallisepticum : influence of cell invasiveness on the outcome of experimental infection in chickens. FEMS Immunol Med Microbiol 34:181–186
    [Google Scholar]
  50. Mushegian A. R., Koonin E. V. 1996; A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10273
    [Google Scholar]
  51. Noormohammadi A. H., Markham P. F., Duffy M. F., Whithear K. G., Browning G. F. 1998; Multigene families encoding the major hemagglutinins in phylogenetically distinct mycoplasmas. Infect Immun 66:3470–3475
    [Google Scholar]
  52. Papazisi L., Troy K. E., Gorton T. S., Liao X., Geary S. J. 2000; Analysis of cytadherence-deficient, GapA-negative Mycoplasma gallisepticum strain R. Infect Immun 68:6643–6649
    [Google Scholar]
  53. Papazisi L., Frasca S. Jr, Gladd M., Liao X., Yogev D., Geary S. J. 2002; GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun 70:6839–6845
    [Google Scholar]
  54. Pearson W. R. 1999; Flexible similarity searching with the FASTA3 program package. In Bioinformatics Methods and Protocols pp 185–219 Totowa, NJ: Humana Press;
    [Google Scholar]
  55. Rogers M. J., Simmons J., Walker R. T. 8 other authors 1985; Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci U S A 82:1160–1164
    [Google Scholar]
  56. Sasaki Y., Ishikawa J., Yamashita A. 8 other authors 2002; The complete genomic sequence of Mycoplasma penetrans , an intracellular bacterial pathogen in humans. Nucleic Acids Res 30:5293–5300
    [Google Scholar]
  57. Scamrov A., Beabealashvilli R. 1991; Mycoplasma gallisepticum strain S6 genome contains three regions hybridizing with 16 S rRNA and two regions hybridizing with 23S and 5S rRNA. FEBS Lett 291:71–74
    [Google Scholar]
  58. Seto S., Layh-Schmitt G., Kenri T., Miyata M. 2001; Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol 183:1621–1630
    [Google Scholar]
  59. Sonnhammer E. L., Durbin R. 1994; A workbench for large-scale sequence homology analysis. Comput Appl Biosci 10:301–307
    [Google Scholar]
  60. Tatusov R. L., Natale D. A., Garkavtsev I. V. 7 other authors 2001; The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28
    [Google Scholar]
  61. van Wely K. H., Swaving J., Freudl R., Driessen A. J. 2001; Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454
    [Google Scholar]
  62. Winner F., Rosengarten R., Citti C. 2000; In vitro cell invasion of Mycoplasma gallisepticum . Infect Immun 68:4238–4244
    [Google Scholar]
  63. Woese C. R., Maniloff J., Zablen L. B. 1980; Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci U S A 77:494–498
    [Google Scholar]
  64. Ye F., Renaudin J., Bove J. M., Laigret F. 1994; Cloning and sequencing of the replication origin ( oriC ) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids. Curr Microbiol 29:23–29
    [Google Scholar]
  65. Yogev D., Menaker D., Strutzberg K., Levisohn S., Kirchhoff H., Hinz K. H., Rosengarten R. 1994; A surface epitope undergoing high-frequency phase variation is shared by Mycoplasma gallisepticum and Mycoplasma bovis . Infect Immun 62:4962–4968
    [Google Scholar]
  66. Zhang Z., Schaffer A. A., Miller W., Madden T. L., Lipman D. J., Koonin E. V., Altschul S. F. 1998; Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26:3986–3990
    [Google Scholar]
  67. Zou N., Dybvig K. 2002; DNA replication, repair and host response. In Molecular Biology and Pathogenicity of Mycoplasmas pp 303–321 Edited by Razin R, Herrmann S. New York: Kluwer/Plenum;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26427-0
Loading
/content/journal/micro/10.1099/mic.0.26427-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error