1887

Abstract

Extracellular and transmembrane proteins are important for the binding of bacteria to intestinal surfaces and for their interaction with the host. The aim of this study was to identify genes encoding extracellular and transmembrane proteins from the probiotic bacterium by construction and screening of a phage display library. This library was constructed by insertion of randomly fragmented DNA from into the phagemid vector pG3DSS, which was previously developed for screening for extracellular proteins. After affinity selection of the library, the inserts were sequenced and analysed with bioinformatic tools. The screening resulted in the identification of 52 novel genes encoding extracellular and transmembrane proteins. These proteins were classified as: transport proteins; enzymes; sensor–regulator proteins; proteins involved in host/microbial interactions; conserved hypothetical proteins; and unconserved hypothetical proteins. Further characterization of the extracellular and transmembrane proteins identified should contribute to the understanding of the probiotic properties of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26530-0
2003-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493493.html?itemId=/content/journal/micro/10.1099/mic.0.26530-0&mimeType=html&fmt=ahah

References

  1. Ahrné S., Molin G., Axelsson L. 1992; Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr Microbiol 24:199–205
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Andersson H., Asp N.-G., Bruce Å., Roos S., Wadström T., Wold A. E. 2001; Health effects of probiotics and probiotics: a literature review on human studies. Scand J Nutr 45:58–75
    [Google Scholar]
  4. Balachandran P., Brooks-Walter A., Virolainen-Julkunen A., Hollingshead S. K., Briles D. E. 2002; Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae . Infect Immun 70:2526–2534
    [Google Scholar]
  5. Bass S., Greene R., Wells J. A. 1990; Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8:309–314
    [Google Scholar]
  6. Bateman A., Bycroft M. 2000; The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD. J Mol Biol 299:1113–1119
    [Google Scholar]
  7. Bjerketorp J., Nilsson M., Ljungh A., Flock J. I., Jacobsson K., Frykberg L. 2002; A novel von Willebrand factor binding protein expressed by Staphylococcus aureus . Microbiology 148:2037–2044
    [Google Scholar]
  8. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753
    [Google Scholar]
  9. Casas I. A., Dobrogosz W. J. 2000; Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis 12:247–285
    [Google Scholar]
  10. Cheng Q., Finkel D., Hostetter M. K. 2000; Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae . Biochemistry 39:5450–5457
    [Google Scholar]
  11. Dave S., Brooks-Walter A., Pangburn M. K., McDaniel L. S. 2001; PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 69:3435–3437
    [Google Scholar]
  12. Dunne C. 2001; Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis 7:136–145
    [Google Scholar]
  13. Edwards R. A., Puente J. L. 1998; Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 6:282–287
    [Google Scholar]
  14. Fekkes P., Driessen A. J. 1999; Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173
    [Google Scholar]
  15. Graschopf A., Blasi U. 1999; Molecular function of the dual-start motif in the lambda S holin. Mol Microbiol 33:569–582
    [Google Scholar]
  16. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y. 1998; Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 8:557–561
    [Google Scholar]
  17. Hugenholtz J., Sybesma W., Groot M. N. 12 other authors 2002; Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235
    [Google Scholar]
  18. Jacobsson K., Frykberg L. 1996; Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100 % correct clones. Biotechniques 20:1070–1081
    [Google Scholar]
  19. Jacobsson K., Rosander A., Bjerketorp J., Frykberg L. 2003; Shotgun phage display – selection for bacterial receptins or other exported proteins. Biol Proced Online 5:123–135
    [Google Scholar]
  20. Jonsson H., Ström E., Roos S. 2001; Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro . FEMS Microbiol Lett 204:19–22
    [Google Scholar]
  21. Kandler O., Stetter K.-O., Köhl R. 1980; Lactobacillus reuteri sp. nov., a new species of heterofermentative Lactobacilli . Zentbl Bakteriol Mikrobiol Hyg I Abt Orig C1:264–269
    [Google Scholar]
  22. Kleerebezem M., Boekhorst J., Van Kranenburg R. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995
    [Google Scholar]
  23. Klemm P., Schembri M. A. 2000; Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35
    [Google Scholar]
  24. Kozak M. 1999; Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208
    [Google Scholar]
  25. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580
    [Google Scholar]
  26. Lindmark H., Jonsson P., Engvall E., Guss B. 1999; Pulsed-field gel electrophoresis and distribution of the genes zag and fnz in isolates of Streptococcus equi . Res Vet Sci 66:93–99
    [Google Scholar]
  27. Martoglio B., Dobberstein B. 1998; Signal sequences: more than just greasy peptides. Trends Cell Biol 8:410–415
    [Google Scholar]
  28. Mulder N. J., Apweiler R., Attwood T. K. 34 other authors 2003; The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318
    [Google Scholar]
  29. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  30. Ouwehand A., Kirjavainen P., Shortt C., Salminen S. 1999; Probiotics: mechanisms and established effects. Int Dairy J 9:43–52
    [Google Scholar]
  31. Ouwehand A. C., Salminen S., Isolauri E. 2002; Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289
    [Google Scholar]
  32. Ponting C. P., Aravind L., Schultz J., Bork P., Koonin E. V. 1999; Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745
    [Google Scholar]
  33. Reid G. 1999; The scientific basis for probiotic strains of Lactobacillus . Appl Environ Microbiol 65:3763–3766
    [Google Scholar]
  34. Reid G., Burton J. 2002; Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect 4:319–324
    [Google Scholar]
  35. Reniero R., Cocconcelli P., Morelli L. 1992; High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J Gen Microbiol 138:763–768
    [Google Scholar]
  36. Rice P., Longden I., Bleasby A. 2000; EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277
    [Google Scholar]
  37. Roos S., Jonsson H. 2002; A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442
    [Google Scholar]
  38. Roos S., Aleljung P., Robert N., Lee B., Wadström T., Lindberg M., Jonsson H. 1996; A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system?. FEMS Microbiol Lett 144:33–38
    [Google Scholar]
  39. Roos S., Lindgren S., Jonsson H. 1999; Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Mol Microbiol 32:427–436
    [Google Scholar]
  40. Rosander A., Bjerketorp J., Frykberg L., Jacobsson K. 2002; Phage display as a novel screening method to identify extracellular proteins. J Microbiol Methods 51:43–55
    [Google Scholar]
  41. Rosander A., Frykberg L., Ausmees N., Muller P. 2003; Identification of extracytoplasmic proteins in Bradyrhizobium japonicum using phage display. Mol Plant Microbe Interact 16:727–737
    [Google Scholar]
  42. Rosenow C., Ryan P., Weiser J. N., Johnson S., Fontan P., Ortqvist A., Masure H. R. 1997; Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae . Mol Microbiol 25:819–829
    [Google Scholar]
  43. Saleh M. T., Fillon M., Brennan P. J., Belisle J. T. 2001; Identification of putative exported/secreted proteins in prokaryotic proteomes. Gene 269:195–204
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Sutcliffe I. C., Russell R. R. 1995; Lipoproteins of gram-positive bacteria. J Bacteriol 177:1123–1128
    [Google Scholar]
  46. Taguchi S., Nishiyama K., Kumagai I., Momose H., Miura K. 1991; Relationship between utilization of dual translational initiation signals and protein processing in Streptomyces . Mol Gen Genet 226:328–331
    [Google Scholar]
  47. Tettelin H., Nelson K. E., Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506
    [Google Scholar]
  48. Tjalsma H., Bolhuis A., Jongbloed J. D., Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547
    [Google Scholar]
  49. van Hijum S. A., van Geel-Schutten G. H., Rahaoui H., van der Maarel M. J., Dijkhuizen L. 2002; Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398
    [Google Scholar]
  50. van Wely K. H., Swaving J., Freudl R., Driessen A. J. 2001; Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454
    [Google Scholar]
  51. Ventura M., Jankovic I., Walker D. C., Pridmore R. D., Zink R. 2002; Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri . Appl Environ Microbiol 68:6172–6181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26530-0
Loading
/content/journal/micro/10.1099/mic.0.26530-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error