1887

Abstract

The polar flagella of have sodium-driven motors, and four membrane proteins, PomA, PomB, MotX and MotY, are essential for torque generation of the motor. PomA and PomB are believed to form a sodium-conducting channel. This paper reports the purification of the motor complex by using sucrose monocaprate, a non-ionic detergent, to solubilize the complex. Plasmid pKJ301, which encodes intact PomA, and PomB tagged with a C-terminal hexahistidine that does not interfere with PomB function, was constructed. The membrane fraction of cells transformed with pKJ301 was solubilized with sucrose monocaprate, and the solubilized materials were applied to a Ni-NTA column. The imidazole eluate contained both PomA and PomB, which were further purified by anion-exchange chromatography. Gel-filtration chromatography was used to investigate the apparent molecular size of the complex; the PomA/PomB complex was eluted as approx. 900 kDa and PomB alone was eluted as approx. 260 kDa. These findings suggest that the motor complex may have a larger structure than previously assumed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26577-0
2004-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500911.html?itemId=/content/journal/micro/10.1099/mic.0.26577-0&mimeType=html&fmt=ahah

References

  1. Asai Y., Kojima S., Kato H., Nishioka N., Kawagishi I., Homma M. 1997; Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110
    [Google Scholar]
  2. Asai Y., Kawagishi I., Sockett E., Homma M. 1999; Hybrid motor with the H+- and Na+-driven components can rotate Vibrio polar flagella by using sodium ions. J Bacteriol 181:6322–6338
    [Google Scholar]
  3. Asai Y., Yakushi T., Kawagishi I., Homma M. 2003; Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463 [CrossRef]
    [Google Scholar]
  4. Atsumi T., Sugiyama S., Cragoe E. J., Jr, Imae Y. 1990; Specific inhibition of the Na+-driven flagellar motors of alkalophilic Bacillus strains by the amiloride analog phenamil. J Bacteriol 172:1634–1639
    [Google Scholar]
  5. Atsumi T., McCarter L., Imae Y. 1992; Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184 [CrossRef]
    [Google Scholar]
  6. Bakkeva L. E., Chumakov K. M., Drachev A. L., Metlina A. L., Skulachev V. P. 1986; The sodium cycle. III. Vibrio alginolyticus resembles Vibrio cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures. Biochim Biophys Acta 850:466–472 [CrossRef]
    [Google Scholar]
  7. Bartolome B., Jubete Y., Martinez E., Cruz F. 1991; Construction and properties of a family of pACY184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102:75–78 [CrossRef]
    [Google Scholar]
  8. Berry R. M., Armitage J. P. 1999; The bacterial flagella motor. Adv Microb Physiol 41:291–337
    [Google Scholar]
  9. Blair D. F. 1995; How bacteria sense and swim. Annu Rev Microbiol 49:489–522 [CrossRef]
    [Google Scholar]
  10. Blair D. F. 2003; Flagellar movement driven by proton translocation. FEBS Lett 545:86–95 [CrossRef]
    [Google Scholar]
  11. Blair D. F., Berg H. C. 1990; The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449 [CrossRef]
    [Google Scholar]
  12. Braun T. F., Blair D. F. 2001; Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059 [CrossRef]
    [Google Scholar]
  13. Chun S. Y., Parkinson J. S. 1988; Bacterial motility: membrane topology of the Escherichia coli. MotB protein. Science 239:276–278 [CrossRef]
    [Google Scholar]
  14. DeRosier D. J. 1998; The turn of the screw: the bacterial flagellar motor. Cell 93:17–20 [CrossRef]
    [Google Scholar]
  15. Driks A., DeRosier D. J. 1990; Additional structures associated with bacterial flagellar basal body. J Mol Biol 211:669–672 [CrossRef]
    [Google Scholar]
  16. Furuno M., Nishioka N., Kawagishi I., Homma M. 1999; Suppression by the DNA fragment of the motX promoter region on long flagellar mutants of Vibrio alginolyticus. Microbiol Immunol 43:39–43 [CrossRef]
    [Google Scholar]
  17. Garza A. G., Harrishaller L. W., Stoebner R. A., Manson M. D. 1995; Motility protein interactions in the bacterial flagellar motor. Proc Natl Acad Sci U S A 92:1970–1974 [CrossRef]
    [Google Scholar]
  18. Garza A. G., Biran R., Wohlschlegel J. A., Manson M. D. 1996; Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. J Mol Biol 258:270–285 [CrossRef]
    [Google Scholar]
  19. Gosink K. K., Häse C. C. 2000; Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor ofEscherichia coli. J Bacteriol 182:4234–4240 [CrossRef]
    [Google Scholar]
  20. Homma M., Aizawa S.-I., Dean G. E., Macnab R. M. 1987; Identification of the M-ring protein of the flagellar motor of Salmonella typhimurium. Proc Natl Acad Sci U S A 84:7483–7487 [CrossRef]
    [Google Scholar]
  21. Jaques S., Kim Y. K., McCarter L. L. 1999; Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc Natl Acad Sci U S A 96:5740–5745 [CrossRef]
    [Google Scholar]
  22. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y. 1995; Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177:5158–5160
    [Google Scholar]
  23. Kojima S., Blair D. F. 2001; Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050 [CrossRef]
    [Google Scholar]
  24. Kojima S., Atsumi T., Muramoto K., Kudo S., Kawagishi I., Homma M. 1997; Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor. J Mol Biol 265:310–318 [CrossRef]
    [Google Scholar]
  25. Kojima S., Asai Y., Atsumi T., Kawagishi I., Homma M. 1999; Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations of putative channel components. J Mol Biol 285:1537–1547 [CrossRef]
    [Google Scholar]
  26. Macnab R. M. 1999; The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153
    [Google Scholar]
  27. McCarter L. L. 1994a; MotY, a component of the sodium-type flagellar motor. J Bacteriol 176:4219–4225
    [Google Scholar]
  28. McCarter L. L. 1994b; MotX, the channel component of the sodium-type flagellar motor. J Bacteriol 176:5988–5998
    [Google Scholar]
  29. McCarter L. L. 2001; Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65:445–462 [CrossRef]
    [Google Scholar]
  30. Morales B. M., Backman A., Bagdasarian M. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97:39–47 [CrossRef]
    [Google Scholar]
  31. Okabe M., Yakushi T., Asai Y., Homma M. 2001; Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene. J Biochem 130:879–884 [CrossRef]
    [Google Scholar]
  32. Okabe M., Yakushi T., Kojima M., Homma M. 2002; MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus. Mol Microbiol 46:125–134 [CrossRef]
    [Google Scholar]
  33. Okunishi I., Kawagishi I., Homma M. 1996; Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor inVibrio alginolyticus. J Bacteriol 178:2409–2415
    [Google Scholar]
  34. Sato K., Homma M. 2000a; Functional reconstitution of the Na+-driven polar flagellar motor component ofVibrio alginolyticus. J Biol Chem 275:5718–5722 [CrossRef]
    [Google Scholar]
  35. Sato K., Homma M. 2000b; Multimeric structure of PomA, the Na+-driven polar flagellar motor component of Vibrio alginolyticus. J Biol Chem 275:20223–20228 [CrossRef]
    [Google Scholar]
  36. Sharp L. L., Zhou J. D., Blair D. F. 1995a; Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34:9166–9171 [CrossRef]
    [Google Scholar]
  37. Sharp L. L., Zhou J. D., Blair D. F. 1995b; Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci U S A 92:7946–7950 [CrossRef]
    [Google Scholar]
  38. Stolz B., Berg H. C. 1991; Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol 173:7033–7037
    [Google Scholar]
  39. Sugiyama S., Imae Y., Cragoe E. J., Jr. 1988; Amiloride, a specific inhibitor for the Na+-driven flagellar motors of alkalophilicBacillus. J Biol Chem 263:8215–8219
    [Google Scholar]
  40. Tang H., Braun T. F., Blair D. F. 1996; Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261:209–221 [CrossRef]
    [Google Scholar]
  41. Wilson M. L., Macnab R. M. 1990; Co-overproduction and localization of the Escherichia coli motility proteins MotA and MotB. J Bacteriol 173:3932–3939
    [Google Scholar]
  42. Yorimitsu T., Homma M. 2001; Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 150582–93 [CrossRef]
    [Google Scholar]
  43. Yorimitsu T., Sato K., Asai Y., Kawagishi I., Homma M. 1999; Functional interaction between PomA and PomB, the Na+-driven flagellar motor components ofVibrio alginolyticus. J Bacteriol 181:5103–5106
    [Google Scholar]
  44. Yorimitsu T., Kojima M., Yakukshi T., Homma M. 2004; Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor ofVibrio alginolyticus. J Biochem 185:43–45
    [Google Scholar]
  45. Zhou J. D., Fazzio R. T., Blair D. F. 1995; Membrane topology of the MotA protein of Escherichia coli. J Mol Biol 251:237–242 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26577-0
Loading
/content/journal/micro/10.1099/mic.0.26577-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error