1887

Abstract

Synthesis of the [NiFe] hydrogenase requires the participation of 16 accessory genes () besides the genes encoding the structural proteins (). Transcription of is controlled by a −24/−12-type promoter (P), located upstream of and regulated by NifA. In this work, a second −24/−12-type promoter (P), located upstream of the gene and transcribing genes in pea ( L.) bacteroids, has been identified in the gene cluster. Promoter P was also active in free-living cells, as evidenced by genetic complementation of hydrogenase mutants. Both NifA and NtrC activated P expression in the heterologous host . Also, P activity was highly stimulated by NifA in . This NifA activation of P expression only required the -binding site, and it was independent of any -acting element upstream of the box, which suggests a direct interaction of free NifA with the RNA polymerase holoenzyme. P-dependent expression in pea nodules started in interzone II/III, spanned through nitrogen-fixing zone III, and was coincident with the NifA-dependent expression pattern. However, P was dispensable for transcription and hydrogenase activity in pea bacteroids due to transcription initiated at P. This fact and the lack of an activator recruitment system suggest that P plays a secondary role in symbiotic expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26623-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500665.html?itemId=/content/journal/micro/10.1099/mic.0.26623-0&mimeType=html&fmt=ahah

References

  1. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198 [CrossRef]
    [Google Scholar]
  2. Bernhard M., Schwartz E., Rietdorf J., Friedrich B. 1996; The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529
    [Google Scholar]
  3. Bernhard M., Buhrke T., Bleijlevens B., Friedrich B., De Lacey A. L., Fernández V. M., Albracht S. P. 2001; The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem 276:15592–15597 [CrossRef]
    [Google Scholar]
  4. Better M., Ditta G., Helinski D. 1985; Deletion analysis of Rhizobium meliloti symbiotic promoters. EMBO J 4:2419–2424
    [Google Scholar]
  5. Black L. K., Fu C., Maier J. R. 1994; Sequence and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176:7102–7106
    [Google Scholar]
  6. Brito B., Palacios J. M., Hidalgo E., Imperial J., Ruiz-Argüeso T. 1994; Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 176:5297–5303
    [Google Scholar]
  7. Brito B., Palacios J. M., Imperial J.8 other authors 1995; Temporal and spatial co-expression of hydrogenase and nitrogenase genes from Rhizobium leguminosarum bv. viciae in pea (Pisum sativum L.) root nodules. Mol Plant–Microbe Interact 8:235–240 [CrossRef]
    [Google Scholar]
  8. Brito B., Martínez M., Fernández D., Rey L., Cabrera E., Palacios J. M., Imperial J., Ruiz-Argüeso T. 1997; Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci U S A 94:6019–6024 [CrossRef]
    [Google Scholar]
  9. Brito B., Palacios J. M., Imperial J., Ruiz-Argüeso T. 2002; Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased symbiotic hydrogenase activity. Appl Environ Microbiol 68:2461–2467 [CrossRef]
    [Google Scholar]
  10. Casalot L., Rousset M. 2001; Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237 [CrossRef]
    [Google Scholar]
  11. Chiurazzi M., Iaccarino M. 1990; Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol Microbiol 4:1727–1735 [CrossRef]
    [Google Scholar]
  12. Colombo M. V., Gutiérrez D., Palacios J. M., Imperial J., Ruiz-Argüeso T. 2000; A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv. viciae. Mol Microbiol 36:477–486 [CrossRef]
    [Google Scholar]
  13. Drummond M., Clements J., Merrick M., Dixon R. 1983; Positive control and autogenous regulation of the nifLA promoter inKlebsiella pneumoniae. Nature 301:302–307 [CrossRef]
    [Google Scholar]
  14. Durmowicz M. C., Maier R. J. 1998; The FixK2 protein is involved in regulation of symbiotic hydrogenase expression inBradyrhizobium japonicum. J Bacteriol 180:3253–3256
    [Google Scholar]
  15. Elsen S., Colbeau A., Chabert J., Vignais P. M. 1996; The hupTUV operon is involved in negative control of hydrogenase synthesis inRhodobacter capsulatus. J Bacteriol 178:5174–5181
    [Google Scholar]
  16. Friedrich B., Schwartz E. 1993; Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47:351–383 [CrossRef]
    [Google Scholar]
  17. Fu C., Maier R. J. 1994; Organization of the hydrogenase gene cluster from Bradyrhizobium japonicum: sequences and analysis of five more hydrogenase-related genes. Gene 145:91–96 [CrossRef]
    [Google Scholar]
  18. Gutiérrez D., Hernando Y., Palacios J. M., Imperial J., Ruiz-Argüeso T. 1997; FnrN controls symbiotic nitrogen fixation and hydrogenase activities in Rhizobium leguminosarum bv. viciae UPM791. J Bacteriol 179:5264–5270
    [Google Scholar]
  19. Hernando Y., Palacios J. M., Imperial J., Ruiz-Argüeso T. 1995; The hypBFCDE operon from Rhizobium leguminosarum biovar viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene. J Bacteriol 177:5661–5669
    [Google Scholar]
  20. Hidalgo E., Palacios J. M., Murillo J., Ruiz-Argüeso T. 1992; Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 174:4130–4139
    [Google Scholar]
  21. Imperial J., Ugalde R. A., Shah V. K., Brill W. J. 1984; Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase inKlebsiella pneumoniae. J Bacteriol 158:187–194
    [Google Scholar]
  22. Kennedy C. 1977; Linkage map of the nitrogen fixation (nif) genes in Klebsiella pneumoniae. Mol Gen Genet 157:199–204 [CrossRef]
    [Google Scholar]
  23. Leyva A., Palacios J. M., Mozo T., Ruiz-Argüeso T. 1987; Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. J Bacteriol 169:4929–4934
    [Google Scholar]
  24. Leyva A., Palacios J. M., Murillo J., Ruiz-Argüeso T. 1990; Genetic organization of the hydrogen uptake (hup) cluster fromRhizobium leguminosarum. J Bacteriol 172:1647–1655
    [Google Scholar]
  25. MacNeil T., Roberts G. P., MacNeil D., Tyler B. 1982; The products of glnL and glnG are bifunctional regulatory proteins. Mol Gen Genet 188:325–333 [CrossRef]
    [Google Scholar]
  26. Menon N. K., Robbins J., Wendt J. C., Shanmugam K. T., Przybyla A. E. 1991; Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Molina-López J. A., Govantes F., Santero E. 1994; Geometry of the process of activation at the σ54-dependent nifH promoter of Klebsiella pneumoniae. J Biol Chem 269:25419–25425
    [Google Scholar]
  29. Morett E., Buck M. 1988; NifA-dependent in vivo protection demonstrates that the upstream activator sequence of nif promoters is a protein binding site. Proc Natl Acad Sci U S A 85:9401–9405 [CrossRef]
    [Google Scholar]
  30. Morett E., Segovia L. 1993; The σ54 bacterial enhancer-binding protein family: mechanism of activation and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  31. O'Gara F., Shanmugam K. T. 1976; Regulation of nitrogen fixation by rhizobia: export of fixed N2 as [inline-graphic]. Biochem Biophys Acta 437:313–321 [/inline-graphic] [CrossRef]
    [Google Scholar]
  32. Parry S. K., Sharma S. B., Terzaghi E. A. 1994; Construction of a bidirectional promoter probe vector and its use in analysing nod gene expression in Rhizobium loti. Gene 150:105–109 [CrossRef]
    [Google Scholar]
  33. Pérez-Martín J., de Lorenzo V. 1995; Integration host factor suppresses promiscuous activation of the σ54-dependent promoter Pu ofPseudomonas putida. Proc Natl Acad Sci U S A 92:7277–7281 [CrossRef]
    [Google Scholar]
  34. Rey L., Hidalgo E., Palacios J., Ruiz-Argüeso T. 1992; Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum bv. viciae containing a rubredoxin-like gene and four additional open reading frames. J Mol Biol 228:998–1002 [CrossRef]
    [Google Scholar]
  35. Ruiz-Argüeso T., Hanus F. J., Evans H. J. 1978; Hydrogen production and uptake by pea nodules as affected by strains of Rhizobium leguminosarum. Arch Microbiol 116:113–118 [CrossRef]
    [Google Scholar]
  36. Ruiz-Argüeso T., Palacios J. M., Imperial J. 2001; Regulation of the hydrogenase system in Rhizobium leguminosarum. Plant Soil 230:49–57 [CrossRef]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome ofCorynebacterium glutamicum. Gene 145:69–73 [CrossRef]
    [Google Scholar]
  39. Schwartz E., Buhrke T., Gerischer U., Friedrich B. 1999; Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 181:5684–5692
    [Google Scholar]
  40. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  41. Smith P. K., Krohn R. I., Hermanson G. T.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  42. Soupène E., Foussard M., Boistard P., Truchet G., Batut J. 1995; Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci U S A 92:3759–3763 [CrossRef]
    [Google Scholar]
  43. Spaink H. P., Okker R. J. H., Wijffelman C. A., Peers E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39 [CrossRef]
    [Google Scholar]
  44. Summers W. C. 1970; A simple method for extraction of RNA from E. coli utilizing diethyl pyrocarbonate. Anal Biochem 33:459–463
    [Google Scholar]
  45. Szeto W. W., Nixon B. T., Ronson C. W., Ausubel F. M. 1987; Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol 169:1423–1432
    [Google Scholar]
  46. Van de Wiel C., Scheres B., Bisseling T., Frassen H., van Lierop M. J., van Lammeren A., van Kammen A. 1990; The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9:1–7
    [Google Scholar]
  47. Van Soom C., Browaeys J., Verreth C., Vanderleyden J. 1993a; Nucleotide sequence analysis of four genes, hupC, hupD, hupF and hupG, downstream of the hydrogenase structural genes in Bradyrhizobium japonicum. J Mol Biol 234:508–512 [CrossRef]
    [Google Scholar]
  48. Van Soom C., Verreth C., Sampaio M. J., Vanderleyden J. 1993b; Identification of a potential transcriptional regulator of hydrogenase activity in free-living Bradyrhizobium japonicum strains. Mol Gen Genet 239:235–240 [CrossRef]
    [Google Scholar]
  49. Van Soom C., Lerouge I., Vanderleyden J., Ruiz-Argüeso T., Palacios J. M. 1999; Identification and characterization of hupT, a gene involved in negative regulation of hydrogen oxidation in Bradyrhizobium japonicum. J Bacteriol 181:5085–5089
    [Google Scholar]
  50. Vasse J., de Billy F., Camut S., Truchet G. 1990; Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306
    [Google Scholar]
  51. Vignais P. M., Billoud B., Meyer J. 2001; Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501 [CrossRef]
    [Google Scholar]
  52. Vincent J. M. 1970 A Manual for the Practical Study of the Root-nodule Bacteria Oxford: Blackwell Scientific Publications;
  53. Yang W. C., Horvath B., Bisseling T., Hontelez J., van Kammen A. 1991 In situ localization of Rhizobium mRNAs in pea nodules: nifA and nifH localization. Mol Plant–Microbe Interact 4464–468 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26623-0
Loading
/content/journal/micro/10.1099/mic.0.26623-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error