1887

Abstract

Using molecular methods the authors have studied mycobacterial DNA taken from a 19th century victim of tuberculosis. This was the case from which Robert Koch first isolated and cultured the organism responsible for tuberculosis. The mycobacteria were preserved within five glass culture tubes as abundant bacterial colonies on slopes of a gelatinous culture medium of unknown composition. Originally presented by Koch to surgical laryngologist Walter Jobson Horne in London in 1901, the relic has, since 1983, been in the care of the Royal College of Surgeons of England. Light and electron microscopy established the presence of acid-fast mycobacteria but showed that morphological preservation was generally poor. Eleven different genomic loci were successfully amplified by PCR. This series of experiments confirmed that the organisms were indeed and further showed that the original strain was in evolutionary terms similar to ‘modern’ isolates, having undergone the TB D1 deletion. Attempts to determine the genotypic group of the isolate were only partially successful, due in part to the degraded nature of the DNA and possibly also to a truncation in the gene, which formed part of the classification scheme. Spoligotyping resulted in amplification of DR spacers consistent with but with discrepancies between independent extracts, stressing the limitations of this typing method when applied to poorly preserved material.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26654-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493213.html?itemId=/content/journal/micro/10.1099/mic.0.26654-0&mimeType=html&fmt=ahah

References

  1. Allen B. W., Hinkes W. F. 1983; Koch's cultivation of tubercle bacilli. Med Lab Sci 40:85–87
    [Google Scholar]
  2. Aranaz A., Liebana E., Mateos A. 9 other authors 1996; Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J Clin Microbiol 34:2734–2740
    [Google Scholar]
  3. Beaman L., Beaman B. L. 1984; The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiol 34:27–48
    [Google Scholar]
  4. Bemer-Melchior P., Drugeon H. B. 1999; Inactivation of Mycobacterium tuberculosis for DNA typing analysis. J Clin Microbiol 37:2350–2351
    [Google Scholar]
  5. Brosch R., Gordon S. V., Marmiesse M. 12 other authors 2002; A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  7. Collins D. M., Stephens D. M. 1991; Identifcation of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol Lett 67:11–15
    [Google Scholar]
  8. Dormandy T. 1999 The White Death – a History of Tuberculosis London & Rio Grande: The Hambledon Press;
  9. Del Portillo P., Murillo L. A., Patarroyo M. E. 1991; Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29:2163–2168
    [Google Scholar]
  10. Dziadek J., Sajduda A., Borun T. M. 2001; Specificity of insertion sequence-based PCR assays for mycobacterium tuberculosis complex. Int J Tuberc Lung Dis 5:569–574
    [Google Scholar]
  11. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686
    [Google Scholar]
  12. Falkow S. 1988; Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10:Suppl. 2S274–S276
    [Google Scholar]
  13. Fleischmann R. D., Alland D., Eisen J. A. 23 other authors 2002; Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490
    [Google Scholar]
  14. Fletcher H. A., Donoghue H. D., Taylor G. M., van der Zanden A. G. M., Spigelman M. 2003; Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. Microbiology 149:143–151
    [Google Scholar]
  15. Fredricks D. N., Relman D. A. 1996; Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev 9:18–33
    [Google Scholar]
  16. Frothingham R., Strickland P. L., Bretzel G., Ramaswamy S., Musser J. M., Williams D. 1999; Phenotypic and genotypic characterization of Mycobacterium africanum isolates from West Africa. J Clin Microbiol 37:1921–1926
    [Google Scholar]
  17. Garnier T., Eiglmeier K., Camus J.-C. 19 other authors 2003; The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100:7877–7882
    [Google Scholar]
  18. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglemeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655
    [Google Scholar]
  19. Goyal M., Shaw R. J., Banerjee D. K., Coker R. J., Robertson B. D., Young D. B. 1997; Rapid detection of multidrug-resistant tuberculosis. Eur Respir J 10:1120–1124
    [Google Scholar]
  20. Hardie R. M., Watson J. M. 1992; Mycobacterium bovis in England and Wales: past, present and future. Epidemiol Infect 109:23–33
    [Google Scholar]
  21. Kamerbeek J., Schouls L., Kolk A. 8 other authors 1997; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914
    [Google Scholar]
  22. Koch R. 1882; Die Aetiologie der Tuberculose. Berl Klin Wochenschr 19:221–230
    [Google Scholar]
  23. Koch R. 1901; The combatting of tuberculosis in the light of experience that has been gained in the successful combatting of other infectious diseases. Lancet II:187–191
    [Google Scholar]
  24. Li Z., Kelley C., Collins F., Rouse D., Morris S. 1998; Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177:1030–1035
    [Google Scholar]
  25. Liébana E., Aranaz A., Francis B., Cousins D. 1996; Assessment of genetic markers for species differentiation within the Mycobacteria tuberculosis complex. J Clin Microbiol 34:933–938
    [Google Scholar]
  26. Ligon B. L. 2002; Robert Koch: Nobel laureate and controversial figure in tuberculin research. Semin Pediatr Infect Dis 13:289–299
    [Google Scholar]
  27. Mays S. A., Taylor G. M., Legge A. J., Young D. B., Turner-Walker G. A. 2001; Palaepathological and biomolecular study of tuberculosis in a medieval skeletal collection from England. Am J Phys Anthropol 114:298–311
    [Google Scholar]
  28. Pretorius G. S., Van Helden P. D., Sirgel F., Eisenach K. D., Victor T. C. 1995; Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother 39:2276–2281
    [Google Scholar]
  29. Rouse D. A., Morris S. L. 1995; Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis. Infect Immun 63:1427–1433
    [Google Scholar]
  30. Rouse D. A., Li Z., Bai G.-H., Moriss S. L. 1995; Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 39:2472–2477
    [Google Scholar]
  31. Scior T., Menses Morales I., Garces Eisele S. J., Domeyer D., Laufer S. 2002; Antitubercular isoniazid and drug resistance of Mycobacterium tuberculosis – a review. Arch Pharm 335:511–525
    [Google Scholar]
  32. Scorpio A., Collins D., Whipple D., Cave D., Bates J., Zhang Y. 1997; Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 35:106–110
    [Google Scholar]
  33. Sreevatsan S., Escalante P., Pan X. 11 other authors 1996; Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol 34:2007–2010
    [Google Scholar]
  34. Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94:9869–9874
    [Google Scholar]
  35. Taylor G. M., Crossey M., Saldanha J. A., Waldron T. 1996; Detection of Mycobacterium tuberculosis bacterial DNA in medieval human skeletal remains using polymerase chain reaction. J Archaeol Sci 23:789–798
    [Google Scholar]
  36. van Embden J. D., Cave M. D., Crawford J. T. 7 other authors 1993; Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409
    [Google Scholar]
  37. Watts G. 2001; Splendid isolation. New Scientist 169:48–49
    [Google Scholar]
  38. Wei C. J., Lei B., Musser J. M., Tu S. C. 2003; Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase ( katG) mutants evident in InhA inhibitor production. Antimicrob Agents Chemother 47:670–675
    [Google Scholar]
  39. Weil A., Pliyatis B. B., Butler W. R., Woodley C. L., Shinnick T. M. 1996; The mtp40 gene is not present in all strains of Mycobacterium tuberculosis. J Clin Microbiol 34:2309–2311
    [Google Scholar]
  40. Zhang Y., Young D. 1994; Strain variation in the katG region of Mycobacterium tuberculosis. Mol Microbiol 14:301–308
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26654-0
Loading
/content/journal/micro/10.1099/mic.0.26654-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error