1887

Abstract

In several Gram-positive and Gram-negative bacteria glutamate decarboxylases play an important role in the maintenance of cellular homeostasis in acid environments. Here, new insight is brought to the regulation of the acid response in . Overexpression of , similarly to overexpression of , a known regulator of glutamate decarboxylase expression, leads to increased resistance of strains under high acid conditions, suggesting that YhiE is a regulator of gene expression in the acid response. Target genes of both YhiE (renamed GadE) and GadX were identified by a transcriptomic approach. experiments with GadE purified protein provided evidence that this regulator binds to the promoter region of these target genes. Several of them are clustered together on the chromosome and this chromosomal organization is conserved in many strains. Detailed structural () analysis of this chromosomal region suggests that the promoters of the corresponding genes are preferentially denatured. These results, along with the G+C signature of the chromosomal region, support the existence of a fitness island for acid adaptation on the chromosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26659-0
2004-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500061.html?itemId=/content/journal/micro/10.1099/mic.0.26659-0&mimeType=html&fmt=ahah

References

  1. Arnqvist A., Olsen A., Normark S. 1994; Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol 13:1021–1032 [CrossRef]
    [Google Scholar]
  2. Auger E. A., Redding K., Plumb T., Childs L., Meng S., Bennett G. 1989; Construction of lac fusion to the inducible arginine and lysine decarboxylase genes ofEscherichia coli K12. . Mol Microbiol 3:609–620 [CrossRef]
    [Google Scholar]
  3. Bartholomé B., Jubete Y., Martinez E., de la Cruz F. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102:75–78 [CrossRef]
    [Google Scholar]
  4. Bearson S., Bearson B., Foster J. W. 1997; Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180 [CrossRef]
    [Google Scholar]
  5. Benjamin M., Datta A. 1995; Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol 61:1669–1672
    [Google Scholar]
  6. Bertin P., Benhabiles N., Krin E., Laurent-Winter C., Tendeng C., Turlin E., Thomas A., Danchin A., Brasseur R. 1999; The structural and functional organization of H-NS-like proteins is evolutionarily conserved in Gram-negative bacteria. Mol Microbiol 31:319–329 [CrossRef]
    [Google Scholar]
  7. Booth I. 1985; Regulation of cytoplasmic pH in Bacteria. Microbiol Rev 49:359–378
    [Google Scholar]
  8. Bouvier J., Gordia S., Kampmann G., Lange R., Hengge-Aronis R., Gutierrez C. 1998; Interplay between global regulators of Escherichia coli: effect of RpoS, Lrp and H-NS on transcription of the gene osmC. Mol Microbiol 28:971–980 [CrossRef]
    [Google Scholar]
  9. Bruni C., Colantuoni V., Sbordone L., Cortese R., Blasi F. 1977; Biochemical and regulatory properties of Escherichia coli K-12 his mutants. . J Bacteriol 130:4–10
    [Google Scholar]
  10. Castanie-Cornet M. P., Foster J. W. 2001; Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–715
    [Google Scholar]
  11. Castanie-Cornet M., Penfound T., Smith D., Elliott J., Foster J. 1999; Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535
    [Google Scholar]
  12. Clementz T. 1992; The gene coding for 3-deoxy-manno-octulosonic acid transferase and the rfaQ gene are transcribed from divergently arranged promoters inEscherichia coli. J Bacteriol 174:7750–7756
    [Google Scholar]
  13. De Biase D., Tramonti A., Bossa F., Visca P. 1999; The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211 [CrossRef]
    [Google Scholar]
  14. Dilworth M., Glenn A. 1999; Problems of adverse pH and bacterial strategies to combat it. In Bacterial Responses to pHNovartis Foundation Symposium 221 pp. 4–18Edited by Chadwick D., Cardew G. Chichester: Wiley;
    [Google Scholar]
  15. Foster J., Moreno M. 1999; Inducible acid tolerance mechanisms in enteric bacteria. In Bacterial Responses to pHNovartis Foundation symposium 221 pp. 55–74Edited by Chadwick D., Cardew G. Chichester: Wiley;
    [Google Scholar]
  16. Gale E. 1946; The bacterial amino acid decarboxylases. Adv Enzymol 6:1–32
    [Google Scholar]
  17. Hacker J., Carniel E. 2001; Ecological fitness, genomic islands and bacterialpathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 21:376–381
    [Google Scholar]
  18. Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J. P., Danchin A., Bertin P. 2001; Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36 [CrossRef]
    [Google Scholar]
  19. Hommais F., Laurent-Winter C., Labas V., Krin E., Tendeng C., Soutourina O., Danchin A., Bertin P. 2002; Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics 2:571–579 [CrossRef]
    [Google Scholar]
  20. Krin E., Hommais F., Soutourina O., Ngo S., Danchin A., Bertin P. 2001; Description and application of a rapid method for genomic DNA direct sequencing. FEMS Microbiol Lett 199:229–233 [CrossRef]
    [Google Scholar]
  21. Laurent-Winter C., Ngo S., Danchin A., Bertin P. 1997; Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response. Eur J Biochem 244:767–773 [CrossRef]
    [Google Scholar]
  22. Lin J., Lee I. S., Frey J., Slonczewski J. L., Foster J. W. 1995; Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli. J Bacteriol 177:4097–4104
    [Google Scholar]
  23. Ma Z., Richard H., Tucker D. L., Conway T., Foster J. W. 2002; Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). . J Bacteriol 184:7001–7012 [CrossRef]
    [Google Scholar]
  24. Masuda N., Church G. M. 2002; Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184:6225–6234 [CrossRef]
    [Google Scholar]
  25. Masuda N., Church G. M. 2003; Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712 [CrossRef]
    [Google Scholar]
  26. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Norioka S., Ramakrishnan G., Ikenaka K., Inouye M. 1986; Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli. J Biol Chem 261:17113–17119
    [Google Scholar]
  28. Rescei P. A., Snell E. E. 1972; Histidine decarboxylaseless mutants of Lactobacillus 30a: isolation and growth properties. J Bacteriol 112:624–626
    [Google Scholar]
  29. Rowbury R. 1997; Regulatory components, including integration host factor, CysB, and H-NS, that influence pH responses in Escherichia coli. Lett Appl Microbiol 24:319–328 [CrossRef]
    [Google Scholar]
  30. Rowland G. C., Giffard P. M., Booth I. R. 1984; Genetic studies of the phs locus of Escherichia coli, a mutation causing pleiotropic lesions in metabolism and pH homeostasis. FEBS Lett 173:295–300 [CrossRef]
    [Google Scholar]
  31. Shin S., Castanie-Cornet M. P., Foster J. W., Crawford J. A., Brinkley C., Kaper J. B. 2001; An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41:1133–1150
    [Google Scholar]
  32. Small P., Waterman S. 1998; Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214–216 [CrossRef]
    [Google Scholar]
  33. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508
    [Google Scholar]
  34. Stout V. 1996; Identification of the promoter region for the colanic acid polysaccharide biosynthetic genes in Escherichia coli K-12. . J Bacteriol 178:4273–4280
    [Google Scholar]
  35. Tabor C., Tabor H. 1985; Polyamines in microorganisms. Microbiol Rev 49:81–99
    [Google Scholar]
  36. Takaya A., Suzuki M., Matsui H., Tomoyasu T., Sashinami H., Nakane A., Yamamoto T. 2003; Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar Typhimurium infection of mice. Infect Immun 71:690–696 [CrossRef]
    [Google Scholar]
  37. Tramonti A. V. P., De Canio M., Falconi M., De Biase D. 2002; Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613 [CrossRef]
    [Google Scholar]
  38. Tucker D. L., Tucker N., Conway T. 2002; Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558 [CrossRef]
    [Google Scholar]
  39. Tucker D. L., Tucker N., Ma Z., Foster J. W., Miranda R. L., Cohen P. S., Conway T. 2003; Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185:3190–3201 [CrossRef]
    [Google Scholar]
  40. Velculescu V. E., Zhang L., Zhou W., Vogelstein J., Basrai M. A., Bassett D. E., Hieter P., Vogelstein B., Kinzler K. W. 1997; Characterization of the yeast transcriptome. Cell 88:243–251 [CrossRef]
    [Google Scholar]
  41. Wiese D., Ernsting B., Blumenthal R., Matthews R. 1997; A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. J Mol Biol 270:152–168 [CrossRef]
    [Google Scholar]
  42. Yeramian E. 2000; Genes and the physics of the DNA double-helix. Gene 255:139–150 [CrossRef]
    [Google Scholar]
  43. Yeramian E., Jones L. 2003; GeneFizz: a web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives. . Nucleic Acids Res 31:3843–3849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26659-0
Loading
/content/journal/micro/10.1099/mic.0.26659-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error