1887

Abstract

, a member of the complex, is phylogenetically closely related to , differing in a few biochemical properties. However, these species have different levels of virulence in different hosts; most notably shows lower virulence for humans than . This report presents genomic comparisons using DNA microarray analysis for an extensive study of the diversity of strains. Compared to H37Rv, 13 deletions were identified in 12 strains of , including the regions RD1 to RD10, which are also missing in BCG. In addition, four new deleted regions, named MiD1, RD1, MiD2 and MiD3, were identified. DNA sequencing was used to define the extent of most of the deletions in one strain. Although RD1 of BCG and is thought to be crucial for attenuation, in this study, three of the four strains that were isolated from immunocompetent patients had the RD1 deletion. In fact, only the RD3 deletion was present in all of the strains examined, although deletions RD7, RD8 and MiD1 were found in almost all the strains. These deletions might therefore have some relation to the different host range of . It was also noticeable that of the 12 strains studied, only three were identical; these strains were all isolated from immunocompetent humans, suggesting that they could have arisen from a single source. Thus, this study shows that it is difficult to ascribe virulence to any particular pattern of deletion in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26660-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501519.html?itemId=/content/journal/micro/10.1099/mic.0.26660-0&mimeType=html&fmt=ahah

References

  1. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 [CrossRef]
    [Google Scholar]
  2. Bloom B. R., Fine P. E. 1994; The BCG experience: implications for future vaccines against tuberculosis. In Tuberculosis, Pathogenesis, Protection, and Control pp. 531–557Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Brodin P., Eilgmeier K., Marmiesse M., Bilault A., Garnier T., Niemann S., Cole S. T., Brosch R. 2002; Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun 70:5568–5578 [CrossRef]
    [Google Scholar]
  4. Brooke W. S. 1941; The vole acid-fast bacillus. Am Rev Tuberc 43:806–816
    [Google Scholar]
  5. Brosch R., Gordon S. V., Pym A., Eiglmeier K., Garnier T., Cole S. T. 2000; Comparative genomics of the mycobacteria. Int J Med Microbiol 290:143–152 [CrossRef]
    [Google Scholar]
  6. Brosch R., Gordon S. V., Marmiesse M. & 12 other authors; 2002; A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689 [CrossRef]
    [Google Scholar]
  7. Cavanagh R., Begon M., Bennett M. & 12 other authors; 2002; Mycobacterium microti infection (vole tuberculosis) in wild rodent populations. J Clin Microbiol 40:3281–3285 [CrossRef]
    [Google Scholar]
  8. Daffe M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  9. Dannenberg A. M., Bishai W. R., Parrish N., Ruiz R., Johnson W., Zook B. C., Boles J. W., Pitt L. M. 2000; Efficacies of BCG and vole bacillus (Mycobacterium microti) vaccines in preventing clinically apparent pulmonary tuberculosis in rabbits: a preliminary report. Vaccine 19:796–800 [CrossRef]
    [Google Scholar]
  10. Davidson L. A., Draper P., Minnikin D. E. 1982; Studies on the mycolic acids from the walls of Mycobacterium microti. J Gen Microbiol 128:823–828
    [Google Scholar]
  11. Eisen M. B., Brown P. O. 1999; DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205
    [Google Scholar]
  12. Foudraine N. A., van Soolingen D., Noordhoek G. T., Reiss P. 1998; Pulmonary tuberculosis due to Mycobacterium microti in a human immunodeficiency virus-infected patient. Clin Infect Dis 27:1543–1544 [CrossRef]
    [Google Scholar]
  13. Gey van Pittius N. C., Gamieldien J., Hide W., Brown G. D., Siezen R. J., Beyers A. D. 2001 The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria http://www.genomebiology.com/2001/2/10/research/0044
    [Google Scholar]
  14. Gomez A., Mve-Obiang A., Vray B., Rudnicka W., Shamputa I. C., Portaels F., Meyers W. M., Fonteyne P. A., Realini L. 2001; Detection of phospholipase C in nontuberculous mycobacteria and its possible role in hemolytic activity. J Clin Microbiol 39:1396–1401 [CrossRef]
    [Google Scholar]
  15. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655 [CrossRef]
    [Google Scholar]
  16. Hart P. D., Sutherland I. 1977; BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. BMJ 2 :6082293–295 [CrossRef]
    [Google Scholar]
  17. Horstkotte M. A., Sobottka I., Schewe C. K., Schafer P., Laufs R., Rusch-Gerdes S., Niemann S. 2001; Mycobacterium microti llama-type infection presenting as pulmonary tuberculosis in a human immunodeficiency virus-positive patient. J Clin Microbiol 39:406–407 [CrossRef]
    [Google Scholar]
  18. Hsu T., Hingley-Wilson S. M., Chen B. & 14 other authors; 2003; The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420–12425 [CrossRef]
    [Google Scholar]
  19. Huitema H., Jaartsveld F. H. 1967; Mycobacterium microti infection in a cat and some pigs. Antonie Van Leeuwenhoek 33:209–212 [CrossRef]
    [Google Scholar]
  20. Johansen K. A., Gill R. E., Vasin M. L. 1996; Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 64:3259–3266
    [Google Scholar]
  21. Kato-Maeda M., Rhee J. T., Gingeras T. R., Salamon H., Drenkow J., Smittipat N., Small P. M. 2001; Comparing genomes within the species Mycobacterium tuberculosis. Genome Res 11:547–554 [CrossRef]
    [Google Scholar]
  22. Kremer K., van Soolingen D., van Embden J., Hughes S., Inwald J., Hewinson G. 1998; Mycobacterium microti: more widespread than previously thought. J Clin Microbiol 36:2793–2794
    [Google Scholar]
  23. Kremer L., Baulard A. R., Besra G. S. 2000; Genetics of mycolic acid biosynthesis. In Molecular Genetics of Mycobacteria pp. 173–190Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Larsen M. H. 2000; Some common methods in mycobacterial genetics. In Molecular Genetics of Mycobacteria pp. 313–320Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Levy-Frebault V., Portaels F. 1992; Proposed minimal standards for the genus Mycobacterium and for the description of new slowly growing Mycobacterium spp. Int J Syst Bacteriol 42:315–323 [CrossRef]
    [Google Scholar]
  26. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282
    [Google Scholar]
  27. Manabe Y. C., Scott C. P., Bishai W. R. 2002; Naturally attenuated, orally administered Mycobacterium microti as a tuberculosis vaccine is better than subcutaneous Mycobacterium bovis BCG. Infect Immun 70:1566–1570 [CrossRef]
    [Google Scholar]
  28. Niemann S., Richter E., Dalugge-Tamm H., Schlesinger H., Graupner D., Konigstein B., Gurath G., Greinert U., Rusch-Gerdes S. 2000; Two cases of Mycobacterium microti derived tuberculosis in HIV-negative immunocompetent patients. Emerg Infect Dis 6:539–542 [CrossRef]
    [Google Scholar]
  29. Pattyn S. R., Portaels F., Spanoghe L., Magos J. 1970; Further studies on African strains of Mycobacterium tuberculosis: comparison with M. bovis and M. microti. Ann Soc Belg Med Trop 50:211–227
    [Google Scholar]
  30. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T. 2002; Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717 [CrossRef]
    [Google Scholar]
  31. Pym A. S., Brodin P., Majlessi L. & 7 other authors; 2003; Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539 [CrossRef]
    [Google Scholar]
  32. Rastogi N., Legrand E., Sola C. 2001; The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech 20:21–54
    [Google Scholar]
  33. Raynaud C., Guilhot C., Rauzier J., Bordat Y., Pelicic V., Manganelli R., Smith I., Gicquel B., Jackson M. 2002; Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45:203–217 [CrossRef]
    [Google Scholar]
  34. Renshaw P. S., Panagiotidou P., Whelan A., Gordon S. V., Hewinson R. G., Williamson R. A., Carr M. D. 2002; Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1 : 1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6.CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 277:21598–21603 [CrossRef]
    [Google Scholar]
  35. Stanley S. A., Raghavan S., Hwang W. W., Cox J. S. 2003; Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100:13001–13006 [CrossRef]
    [Google Scholar]
  36. Sula L., Radkovsky I. 1976; Protective effects of M. microti vaccine against tuberculosis. J Hyg Epidemiol Microbiol Immunol 20:1–6
    [Google Scholar]
  37. Tsukamura M., Mizuno S., Toyama H. 1985; Taxonomic studies on the Mycobacterium tuberculosis series. Microbiol Immunol 29:285–299 [CrossRef]
    [Google Scholar]
  38. van Soolingen D. 2001; Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249:1–26
    [Google Scholar]
  39. van Soolingen D., van der Zanden A. G., de Haas P. E.7 other authors 1998; Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol 36:1840–1845
    [Google Scholar]
  40. Watanabe M., Aoyagi Y., Ridell M., Minnikin D. E. 2001; Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837
    [Google Scholar]
  41. Wayne L. G., Kubica G. P. 1986; The mycobacteria. In Bergey's Manual of Systematic Bacteriology pp. 1435–1457Edited by Sneath P. H. A.others Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  42. Wells A. Q. 1937; Tuberculosis in wild voles. Lancet 1:1221
    [Google Scholar]
  43. Wilderman P. J., Vasil A. I., Johnson Z., Vasil M. L. 2001; Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 39:291–303 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26660-0
Loading
/content/journal/micro/10.1099/mic.0.26660-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error