1887

Abstract

The ∼16·5 kb surface layer (S-layer) glycan biosynthesis () gene cluster of the Gram-positive thermophile NRS 2004/3a has been sequenced. The cluster is located immediately downstream of the S-layer structural gene and consists of 13 ORFs that have been identified by database sequence comparisons. The cluster encodes dTDP--rhamnose biosynthesis ( operon), required for building up the polyrhamnan S-layer glycan, as well as for assembly and export of the elongated glycan chain, and its transfer to the S-layer protein. This is the first report of a gene cluster likely to be involved in the glycosylation of an S-layer protein. There is evidence that this cluster is transcribed as a polycistronic unit, whereas is transcribed monocistronically. To get insights into the regulatory mechanisms underlying glycosylation of the S-layer protein, the influence of growth temperature on the S-layer was investigated in seven closely related strains, of which only strain NRS 2004/3a possessed a glycosylated S-layer. Chromosomal DNA preparations of these strains were screened for the presence of the operon, because -rhamnose is a frequent constituent of S-layer glycans. From -positive strains, flanking regions of the operon were sequenced. Comparison with the gene cluster of NRS 2004/3a revealed sequence homologies between adjacent genes. The temperature inducibility of S-layer protein glycosylation was investigated in those strains by raising the growth temperature from 55 °C to 67 °C; no change of either the protein banding pattern or the glycan staining behaviour was observed on SDS-PAGE gels, although the transcript was several-fold more abundant at 67 °C. Cell-free extracts of the strains were capable of converting dTDP--glucose to dtdp--rhamnose. Taken together, the results indicate that the locus is highly conserved among strains, and that in the investigated containing strains, dTDP--rhamnose is actively synthesized . However, in contrast to previous reports for wild-type strains, an increase in growth temperature did not switch an S-layer protein phenotype to an S-layer glycoprotein phenotype, via the generation of a new S-layer gene sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26672-0
2004-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500953.html?itemId=/content/journal/micro/10.1099/mic.0.26672-0&mimeType=html&fmt=ahah

References

  1. Altman E., Schäffer C., Brisson J.-R., Messner P. 1995; Characterization of the glycan structure of a major glycopeptide from the surface layer glycoprotein of Clostridium thermosaccharolyticum E207-71. Eur J Biochem 229:308–315 [CrossRef]
    [Google Scholar]
  2. Becker A., Rüberg S., Küster H., Roxlau A. A., Keller M., Ivashina T., Cheng H.-P., Walker G. C., Pühler A. 1997; The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol 179:1375–1384
    [Google Scholar]
  3. Benz I., Schmidt M. A. 2001; Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40:1403–1413 [CrossRef]
    [Google Scholar]
  4. Blatch G. L., Lässle M. 1999; The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939 [CrossRef]
    [Google Scholar]
  5. Bock K., Schuster-Kolbe J., Altman E., Allmaier G., Stahl B., Christian R., Sleytr U. B., Messner P. 1994; Primary structure of the O-glycosidically linked glycan chain of the crystalline surface layer glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111-69. Galactosyl tyrosine as a novel linkage unit. J Biol Chem 269:7137–7144
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Bronner D., Clarke B. R., Whitfield C. 1994; Identification of an ATP-binding cassette transport system required for translocation of lipopolysaccharide O-antigen side chains across the cytoplasmic membrane of Klebsiella pneumoniae serotype O1. Mol Microbiol 14:505–519 [CrossRef]
    [Google Scholar]
  8. Comstock L. E., Coyne M. J., Tzianabos A. O., Kasper D. L. 1999; Interstrain variation of the polysaccharide B biosynthesis locus of Bacteroides fragilis: characterization of the region from strain 638R. J Bacteriol 181:6192–6196
    [Google Scholar]
  9. Deckert G., Warren P., Gaasterland T. & 12 other authors; 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358 [CrossRef]
    [Google Scholar]
  10. Drummelsmith J., Whitfield C. 1999; Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a : K30). Mol Microbiol 31:1321–1332 [CrossRef]
    [Google Scholar]
  11. Egelseer E. M., Idris R., Jarosch M., Danhorn T., Sleytr U. B., Sára M. 2000; ISBst12, a novel type of insertion-sequence element causing loss of S-layer-gene expression in Bacillus stearothermophilus ATCC 12980. Microbiology 146:2175–2183
    [Google Scholar]
  12. Egelseer E. M., Danhorn T., Pleschberger M., Hotzy C., Sleytr U. B., Sára M. 2001; Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch Microbiol 177:70–80 [CrossRef]
    [Google Scholar]
  13. Fox A., Stewart G. C., Waller L. N., Fox K. F., Harley W. M., Price R. L. 2003; Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. J Microbiol Methods 54:143–152 [CrossRef]
    [Google Scholar]
  14. Giraud M.-F., Naismith J. H. 2000; The rhamnose pathway. Curr Opin Struct Biol 10:687–696 [CrossRef]
    [Google Scholar]
  15. Glaser L., Kornfeld S. 1961; The enzymatic synthesis of thymidine-linked sugars. II. Thymidine diphosphate l-rhamnose. J Biol Chem 236:1795–1799
    [Google Scholar]
  16. Graninger M., Kneidinger B., Bruno K., Scheberl A., Messner P. 2002; Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-β-l-rhamnose biosynthesis in the Gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl Environ Microbiol 68:3708–3715 [CrossRef]
    [Google Scholar]
  17. Guo D., Bowden M. G., Pershad R., Kaplan H. B. 1996; The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J Bacteriol 178:1631–1639
    [Google Scholar]
  18. Heinrichs D. E., Monteiro M. A., Perry M. B., Whitfield C. 1998; The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs. J Biol Chem 273:8849–8859 [CrossRef]
    [Google Scholar]
  19. Jarosch M., Egelseer E. M., Mattanovich D., Sleytr U. B., Sára M. 2000; S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology 146:273–281
    [Google Scholar]
  20. Jiang S.-M., Wang L., Reeves P. R. 2001; Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun 69:1244–1255 [CrossRef]
    [Google Scholar]
  21. Keenleyside W. J., Whitfield C. 1999; Genetics and biosynthesis of lipopolysaccharide O-antigens. In Endotoxin in Health and Disease pp. 331–358Edited by Brade H., Opal S. M., Vogel S. N., Morrison D. C. New York & Basel: Marcel Dekker;
    [Google Scholar]
  22. Kneidinger B., Graninger M., Messner P. 2001; Chromosome walking by cloning of distinct PCR fragments. Biotechniques 30:248–249
    [Google Scholar]
  23. Kornfeld S., Glaser L. 1961; The enzymatic synthesis of thymidine-linked sugars. I. Thymidine diphosphate glucose. J Biol Chem 236:1791–1794
    [Google Scholar]
  24. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–744
    [Google Scholar]
  25. Maier R. M., Soberón-Chávez G. 2000; Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633 [CrossRef]
    [Google Scholar]
  26. Marumo K., Lindqvist L., Verma N., Weintraub A., Reeves P. R., Lindberg A. A. 1992; Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-d-xylo-4-hexulose and thymidine diphosphate-l-rhamnose. Production using cloned gene products and separation by HPLC. Eur J Biochem 204:539–545 [CrossRef]
    [Google Scholar]
  27. Messner P., Schäffer C. 2000; Surface layer glycoproteins of Bacteria and Archaea. In Glycomicrobiology pp. 93–125Edited by Doyle R. J. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  28. Messner P., Schäffer C. 2003; Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products vol. 85 pp. 51–124Edited by Herz W., Falk H., Kirby G. W. Wien: Springer;
    [Google Scholar]
  29. Messner P., Hollaus F., Sleytr U. B. 1984; Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210 [CrossRef]
    [Google Scholar]
  30. Nölling J., Breton G., Omelchenko M. V.16 other authors 2001; Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838 [CrossRef]
    [Google Scholar]
  31. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [CrossRef]
    [Google Scholar]
  32. Power P. M., Jennings M. P. 2003; The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222 [CrossRef]
    [Google Scholar]
  33. Raetz C. R. H., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [CrossRef]
    [Google Scholar]
  34. Rahim R., Ochsner U. A., Olvera C., Graninger M., Messner P., Lam J. S., Soberón-Chávez G. 2001; Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718 [CrossRef]
    [Google Scholar]
  35. Reeves P. R., Hobbs M., Valvano M. A.8 other authors 1996; Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503 [CrossRef]
    [Google Scholar]
  36. Rocchetta H. L., Lam J. S. 1997; Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa. J Bacteriol 179:4713–4724
    [Google Scholar]
  37. Rocchetta H. L., Burrows L. L., Lam J. S. 1999; Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual. , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Schäffer C., Messner P. 2001; Glycobiology of surface layer proteins. Biochimie 83:591–599 [CrossRef]
    [Google Scholar]
  40. Schäffer C., Wugeditsch T., Kählig H., Scheberl A., Zayni S., Messner P. 2002; The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 277:6230–6239 [CrossRef]
    [Google Scholar]
  41. Schnaitman C. A., Klena J. D. 1993; Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682
    [Google Scholar]
  42. Sleytr U. B., Messner P. 2003; Crystalline bacterial cell surface layers (S layers. In Desk Encyclopedia of Microbiology pp. 284–291Edited by Schaechter M. San Diego: Elsevier Science;
    [Google Scholar]
  43. Sleytr U. B., Sára M., Pum D., Schuster B., Messner P., Schäffer C. 2002; Self-assembly protein systems: microbial S-layers. In Biopolymers vol. 7Polyamides and Complex Proteinaceous Matrices I pp. 285–338 Edited by Steinbüchel A., Fahnestock S. R. Weinheim: Wiley-VCH;
    [Google Scholar]
  44. Strauss J., Horvath H. K., Abdallah B. M., Kindermann J., Mach R. L., Kubicek C. P. 1999; The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32:169–178 [CrossRef]
    [Google Scholar]
  45. Tsukioka Y., Yamashita Y., Oho T., Nakano Y., Koga T. 1997a; Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans. J Bacteriol 179:1126–1134
    [Google Scholar]
  46. Tsukioka Y., Yamashita Y., Nakano Y., Oho T., Koga T. 1997b; Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans. J Bacteriol 179:4411–4414
    [Google Scholar]
  47. Wang L., Liu D., Reeves P. R. 1996; C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J Bacteriol 178:2598–2604
    [Google Scholar]
  48. Whitfield C. 1995; Biosynthesis of lipopolysaccharide O-antigens. Trends Microbiol 3:178–185 [CrossRef]
    [Google Scholar]
  49. Whitfield C., Valvano M. A. 1993; Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacteria. Adv Microb Physiol 35:135–246
    [Google Scholar]
  50. Winzler R. J. 1955; Determination of serum glycoproteins. Methods Biochem Anal 11:279–311
    [Google Scholar]
  51. Xu K., He Z.-Q., Mao Y.-M., Sheng R.-Q., Sheng Z.-J. 1993; On two transposable elements from Bacillus stearothermophilus. Plasmid 29:1–9 [CrossRef]
    [Google Scholar]
  52. Xu Y., Murray B. E., Weinstock G. M. 1998; A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect Immun 66:4313–4323
    [Google Scholar]
  53. Yamashita Y., Tsukioka Y., Tomihisa K., Nakano Y., Koga T. 1998; Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J Bacteriol 180:5803–5807
    [Google Scholar]
  54. Zhang L., al-Hendy A., Toivanen P., Skurnik M. 1993; Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O : 3: similarities to the dTDP-l-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9:309–321 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26672-0
Loading
/content/journal/micro/10.1099/mic.0.26672-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error