1887

Abstract

High-level resistance to class IIa bacteriocins has been directly associated with the absent EIIAB (MptA) subunit of the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS) () in strains. Class IIa bacteriocin-resistant strains used in this study were a spontaneous resistant, B73-MR1, and a defined mutant, EGDe-. Both strains were previously reported to have the EIIAB PTS component missing. This study shows that these class IIa bacteriocin-resistant strains have significantly decreased specific growth and glucose consumption rates, but they also have a significantly higher growth yield than their corresponding wild-type strains, B73 and EGDe, respectively. In the presence of glucose, the strains showed a shift from a predominantly lactic-acid to a mixed-acid fermentation. It is here proposed that elimination of the EIIAB in the resistant strains has caused a reduced glucose consumption rate and a reduced specific growth rate. The lower glucose consumption rate can be correlated to a shift in metabolism to a more efficient pathway with respect to ATP production per glucose, leading to a higher biomass yield. Thus, the cost involved in obtaining bacteriocin resistance, i.e. losing substrate transport capacity leading to a lower growth rate, is compensated for by a higher biomass yield.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26731-0
2004-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500335.html?itemId=/content/journal/micro/10.1099/mic.0.26731-0&mimeType=html&fmt=ahah

References

  1. Andersen H. W., Solem C., Hammer K., Jensen P. R. 2001; Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183:3458–3467 [CrossRef]
    [Google Scholar]
  2. Chaillou S., Postma P. W., Pouwels P. H. 2001; Contribution of the phosphoenolpyruvate : mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus . Microbiology 147:671–679
    [Google Scholar]
  3. Cocaign-Bousquet M., Garrigues C., Loubiere P., Lindley N. D. 1996; Physiology of pyruvate metabolism in Lactococcus lactis . Antonie van Leeuwenhoek 70:253–267 [CrossRef]
    [Google Scholar]
  4. Dalet K., Cenatiempo Y., Cossart P. The European Listeria Genome Consortium Héchard Y. 2001; A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  5. Dykes G. A., Hastings J. W. 1998; Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett Appl Microbiol 26:5–8 [CrossRef]
    [Google Scholar]
  6. Ennahar S., Deschamps N., Richard J. 2000a; Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 41:1–4 [CrossRef]
    [Google Scholar]
  7. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. 2000b; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106 [CrossRef]
    [Google Scholar]
  8. Garrigues C., Loubiere P., Lindley N. D., Cocaign-Bousquet M. 1997; Control of the shift from homolactic to mixed-acid fermentation in Lactococcus lactis : predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287
    [Google Scholar]
  9. Glaser P., Frangeul L., Buchrieser C. 52 other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  10. Gravesen A., Jydegaard Axelsen A.-M., Hansen T. B., Knøchel S, Mendes da Silva J. 2002a; Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes . Appl Environ Microbiol 68:756–764 [CrossRef]
    [Google Scholar]
  11. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Knøchel S, Jänsch L., Héchard Y., Hastings J. W. 2002b; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology 148:2361–2369
    [Google Scholar]
  12. Héchard Y., Sahl H.-G. 2002; Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557 [CrossRef]
    [Google Scholar]
  13. Héchard Y., Pelletier C., Cenatiempo Y., Frère J. 2001; Analysis of σ 54-dependent genes in Enterococcus faecalis : a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  14. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86 [CrossRef]
    [Google Scholar]
  15. Lengeler J. W., Jahreis K., Wehmeier U. F. 1994; Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 11881–28 [CrossRef]
    [Google Scholar]
  16. Parker C., Hutkins R. W. 1997; Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl Environ Microbiol 63:543–546
    [Google Scholar]
  17. Pine L., Malcolm G. B., Brooks J. B, Daneshvar M. I. 1989; Physiological studies on the growth and utilisation of sugars by Listeria species. Can J Microbiol 35:245–254 [CrossRef]
    [Google Scholar]
  18. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  19. Premaratne R. J., Lin W. J., Johnson E. A. 1991; Development of an improved chemically defined minimal medium for Listeria monocytogenes . Appl Environ Microbiol 57:3046–3048
    [Google Scholar]
  20. Rekhif N., Atrih A., Lefebvre G. 1994; Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria. Curr Microbiol 28:237–241 [CrossRef]
    [Google Scholar]
  21. Romick T. L., Fleming H. P., McFeeters R. F. 1996; Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl Environ Microbiol 62:304–307
    [Google Scholar]
  22. Siebold C., Flukiger K., Beutler R., Erni B. 2001; Carbohydrate transporters of the bacterial phosphoenolpyruvate : sugar phosphotransferase system (PTS. FEBS Lett 504:104–111 [CrossRef]
    [Google Scholar]
  23. Tchieu J., Norris V., Edwards J. S, Saier M. H. Jr 2001; The complete PTS system in Escherichia coli . J Mol Microbiol Biotechnol 3:329–346
    [Google Scholar]
  24. Vadeboncoeur C., Pelletier M. 1997; The phosphoenolpyruvate : sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19:187–207 [CrossRef]
    [Google Scholar]
  25. Ward D. E., Westerhoff H. V., Claiborne A., Snoep J. L, van der Weijden C. C., van der Merwe M. J. 2000; Branched-chain α -keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis : a new, secreted metabolite serving as a temporary redox sink. J Bacteriol 182:3239–3246 [CrossRef]
    [Google Scholar]
  26. Yamada T., Carlsson J. 1975; Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124:55–61
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26731-0
Loading
/content/journal/micro/10.1099/mic.0.26731-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error