RT Journal Article SR Electronic(1) A1 Creasey, Elizabeth A. A1 Friedberg, Devorah A1 Shaw, Robert K. A1 Umanski, Tatiana A1 Knutton, Stuart A1 Rosenshine, Ilan A1 Frankel, GadYR 2003 T1 CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB JF Microbiology, VO 149 IS 12 SP 3639 OP 3647 DO https://doi.org/10.1099/mic.0.26735-0 PB Microbiology Society, SN 1465-2080, AB Enteropathogenic Escherichia coli (EPEC) are extracellular pathogens that colonize mucosal surfaces of the intestine via formation of attaching and effacing (A/E) lesions. The genes responsible for induction of the A/E lesions are located on a pathogenicity island, termed the locus of enterocyte effacement (LEE), which encodes the adhesin intimin and the type III secretion system needle complex, translocator and effector proteins. One of the major EPEC translocator proteins, EspA, forms a filamentous conduit along which secreted proteins travel before they arrive at the translocation pore in the plasma membrane of the host cell, which is composed of EspB and EspD. Prior to secretion, many type III proteins, including translocators, are maintained in the bacterial cytoplasm by association with a specific chaperone. In EPEC, chaperones have been identified for the effector proteins Tir, Map and EspF, and the translocator proteins EspD and EspB. In this study, CesAB (Orf3 of the LEE) was identified as a chaperone for EspA and EspB. Specific CesAB–EspA and CesAB–EspB protein interactions are demonstrated. CesAB was essential for stability of EspA within the bacterial cell prior to secretion. Furthermore, a cesAB mutant failed to secrete EspA, as well as EspB, to assemble EspA filaments, to induce A/E lesion following infection of HEp-2 cells and to adhere to, or cause haemolysis of, erythrocytes., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.26735-0