1887

Abstract

is a Gram-negative bacterium that preys on other Gram-negative bacteria. The lifecycle of alternates between an extracellular flagellated and highly motile non-replicative attack-phase cell and a periplasmic non-flagellated growth-phase cell. The prey bacterium containing periplasmic bdellovibrios becomes spherical but osmotically stable, forming a structure known as the bdelloplast. After completing the growth phase, newly formed bdellovibrios regain their flagellum and escape the bdelloplast into the environment, where they encounter more prey bacteria. The obligate predatory nature of imposes a major difficulty to introducing mutations in genes directly involved in predation, since these mutants could be non-viable. This work reports the cloning of the 109J operon, encoding proteins from the flagellar motor complex, and a genetic approach based on the expression of a antisense RNA fragment to downregulate motility. Periplasmic bdellovibrios carrying the plasmid expressing antisense RNA displayed a marked delay in escaping from bdelloplasts, while the released attack-phase cells showed altered motility. These observations suggest that a functionally intact flagellar motor is required for the predatory lifecycle of . Also, the use of antisense RNA expression may be a useful genetic tool to study the developmental cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26761-0
2004-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500649.html?itemId=/content/journal/micro/10.1099/mic.0.26761-0&mimeType=html&fmt=ahah

References

  1. Alting-Mees M. A., Short J. M. 1989; pBluescript II: gene mapping vectors. Nucleic Acids Res 17:9494 [CrossRef]
    [Google Scholar]
  2. Baer M. L., Ravel J., Chun J., Hill R. T., Williams H. N. 2000; A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus,Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50:219–224 [CrossRef]
    [Google Scholar]
  3. Blair D. F., Berg H. C. 1988; Restoration of torque in defective flagellar motors. Science 242:1678–1681 [CrossRef]
    [Google Scholar]
  4. Blair D. F., Berg H. C. 1990; The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449 [CrossRef]
    [Google Scholar]
  5. Bolivar F. 1978; Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules. Gene 4:121–136 [CrossRef]
    [Google Scholar]
  6. Braun T. F., Poulson S., Gully J. B., Empey J. C., Van Way S., Putnam A., Blair D. F. 1999; Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J Bacteriol 181:3542–3551
    [Google Scholar]
  7. Chun S. Y., Parkinson J. S. 1988; Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278 [CrossRef]
    [Google Scholar]
  8. Cotter T. W., Thomashow M. F. 1992a; A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J Bacteriol 174:6011–6017
    [Google Scholar]
  9. Cotter T. W., Thomashow M. F. 1992b; Identification of a Bdellovibrio bacteriovorus genetic locus,hit, associated with the host-independent phenotype. J Bacteriol 174:6018–6024
    [Google Scholar]
  10. De Mot R., Vanderleyden J. 1994; The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12:333–334 [CrossRef]
    [Google Scholar]
  11. Flannagan R. S. 2003 The identification and characterization of motility and chemotaxis genes in Bdellovibrio bacteriovorus 109J pp 1–150 MSc thesis, University of Western Ontario;
  12. Garza A. G., Harris-Haller L. W., Stoebner R. A., Manson M. D. 1995; Motility protein interactions in the bacterial flagellar motor. Proc Natl Acad Sci U S A 92:1970–1974 [CrossRef]
    [Google Scholar]
  13. Hespell R. B., Rosson R. A., Thomashow M. F., Rittenberg S. C. 1973; Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J Bacteriol 113:1280–1288
    [Google Scholar]
  14. Jurkevitch E., Minz D., Ramati B., Barel G. 2000; Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371 [CrossRef]
    [Google Scholar]
  15. Koval S. F., Hynes S. H. 1991; Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 173:2244–2249
    [Google Scholar]
  16. LaMarre A. G., Straley S. C., Conti S. F. 1977; Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol 131:201–207
    [Google Scholar]
  17. Lambert C., Smith M. C., Sockett R. E. 2003; A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5:127–132 [CrossRef]
    [Google Scholar]
  18. Manson M. D., Tedesco P., Berg H. C., Harold F. M., Van der Drift C. 1977; A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A 74:3060–3064 [CrossRef]
    [Google Scholar]
  19. McCann M. P., Solimeo H. T., McCullen C., Cusick F., Jr, Panunti B. 1998; Developmentally regulated protein synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. Can J Microbiol 44:50–55 [CrossRef]
    [Google Scholar]
  20. McDermott P. J., Gowland P., Gowland P. C. 1993; Adaptation of Escherichia coli growth rates to the presence of pBR322. Lett Appl Microbiol 17:139–143 [CrossRef]
    [Google Scholar]
  21. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  22. Morales V. M., Backman A., Bagdasarian M. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97:39–47 [CrossRef]
    [Google Scholar]
  23. Rosson R. A., Rittenberg S. C. 1979; Regulated breakdown of Escherichia coli deoxyribonucleic acid during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. J Bacteriol 140:620–633
    [Google Scholar]
  24. Rosson R. A., Rittenberg S. C. 1981; Pyrimidine metabolism of Bdellovibrio bacteriovorus grown intraperiplasmically and axenically. J Bacteriol 146:108–116
    [Google Scholar]
  25. Ruby E. G. 1992; The genus Bdellovibrio. In The Prokaryotes pp 3401–3412 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Silverman M., Matsumura P., Simon M. 1976; The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc Natl Acad Sci U S A 73:3126–3130 [CrossRef]
    [Google Scholar]
  28. Stolz B., Berg H. C. 1991; Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol 173:7033–7037
    [Google Scholar]
  29. Straley S. C., Conti S. F. 1977; Chemotaxis by Bdellovibrio bacteriovorus toward prey. J Bacteriol 132:628–640
    [Google Scholar]
  30. Straley S. C., LaMarre A. G., Lawrence L. J., Conti S. F. 1979; Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. J Bacteriol 140:634–642
    [Google Scholar]
  31. Thomashow M. F., Rittenberg S. C. 1978a; Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J:N-deacetylation of Escherichia coli peptidoglycan amino sugars. J Bacteriol 135:1008–1014
    [Google Scholar]
  32. Thomashow M. F., Rittenberg S. C. 1978b; Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids toEscherichia coli peptidoglycan. J Bacteriol 135:1015–1023
    [Google Scholar]
  33. Thomashow M. F., Rittenberg S. C. 1978c; Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J Bacteriol 135:998–1007
    [Google Scholar]
  34. Thomashow M. F., Cotter T. W. 1992; Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J Bacteriol 174:5767–5771
    [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  36. Zhou J., Sharp L. L., Tang H. L., Lloyd S. A., Billings S., Braun T. F., Blair D. F. 1998; Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26761-0
Loading
/content/journal/micro/10.1099/mic.0.26761-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error