1887

Abstract

Plasmids allow the movement of genetic material, including antimicrobial resistance genes, between bacterial species and genera. They frequently mediate resistance to multiple antimicrobials and can result in the acquisition by a pathogen of resistance to all or most clinically relevant antimicrobials. Unfortunately, there are still large gaps in our understanding of how new multi-resistance plasmids evolve. Five Australian clinical institutions collaborated in this study of multi-resistance plasmids in clinical isolates of . We characterized 72 resistance plasmids in terms of the antimicrobial resistance profile they conferred, their size and their incompatibility group. Restriction fragment length polymorphisms were used to determine the genetic relationships between the plasmids. Relationships between the host cells were determined using multi-locus enzyme electrophoresis. A lack of correlation between the evolutionary history of the host cells and their plasmids suggests that the horizontal transfer of resistance plasmids between strains of is common. The resistance plasmids were very diverse, with a wide range of resistance profiles and a lack of discrete evolutionary lineages. Multi-resistance plasmids did not evolve via the co-integrative capture of smaller resistance plasmids; rather, the roles of recombination and the horizontal movement of mobile genetic elements appeared to be most important.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26773-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501539.html?itemId=/content/journal/micro/10.1099/mic.0.26773-0&mimeType=html&fmt=ahah

References

  1. Bell J., Turnidge J. 1995 National Antimicrobial Resistance Surveillance Program Canberra: National Health and Medical Research Council;
  2. Berg T., Firth N., Apisiridej S., Hettiaratchi A., Leelaporn A., Skurray R. A. 1998; Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359
    [Google Scholar]
  3. Blazquez J., Navas A., Gonzalo P., Martinez J. L., Baquero F. 1996; Spread and evolution of natural plasmids harbouring Tn5. FEMS Microbiol Ecol 19:63–71 [CrossRef]
    [Google Scholar]
  4. Boerlin P. 1999; Evolution of virulence factors in Shiga-toxin-producing Escherichia coli. Cell Mol Life Sci 56:735–741 [CrossRef]
    [Google Scholar]
  5. Boyd E. F., Hill C. W., Rich S. M., Hartl D. L. 1996; Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143:1091–1100
    [Google Scholar]
  6. Bradley D. E., Taylor D. E., Levy S. B., Cohen D. R., Brose E. C., Whelan J. 1986; pIN32: a cointegrate plasmid with IncHI2 and IncFII components. J Gen Microbiol 132:1339–1346
    [Google Scholar]
  7. Brown A. W., Rankin S. C., Platt D. J. 2000; Detection and characterisation of integrons in Salmonella enterica serotype enteritidis. FEMS Microbiol Lett 191:145–149 [CrossRef]
    [Google Scholar]
  8. Carattoli A. 2003; Plasmid-mediated antimicrobial resistance in Salmonella enterica. Curr Issues Mol Biol 5:113–122
    [Google Scholar]
  9. Carattoli A., Villa L., Pezzella C., Bordi E., Visca P. 2001; Expanding drug resistance through integron acquisition by IncFI plasmids of Salmonella enterica Typhimurium. Emerg Infect Dis 7:444–447 [CrossRef]
    [Google Scholar]
  10. Carattoli A., Tosini F., Giles W. P., Rupp M. E., Hinrichs S. H., Angulo F. J., Barrett T. J., Fey P. D. 2002; Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant Salmonella strains isolated in the United States between 1996 and 1998. Antimicrob Agents Chemother 46:1269–1272 [CrossRef]
    [Google Scholar]
  11. Chu C., Chiu C. H., Wu W. Y., Chu C. H., Liu T. P., Ou J. T. 2001; Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob Agents Chemother 45:2299–2303 [CrossRef]
    [Google Scholar]
  12. Coetzee J. N., Jacob A. E., Hedges R. W. 1975; Susceptibility of a hybrid plasmid to excision of genetic material. Mol Gen Genet 140:7–14 [CrossRef]
    [Google Scholar]
  13. Condit R., Levin B. R. 1990; The evolution of antibiotic resistance plasmids: the role of segregation, transposition and homologous recombination. Am Nat 135:573–596 [CrossRef]
    [Google Scholar]
  14. Couturier M., Bex F., Bergquist P. L., Maas W. K. 1988; Identification and classification of bacterial plasmids. Microbiol Rev 52:375–395
    [Google Scholar]
  15. de Souza M. L., Seffernick J., Martinez B., Sadowsky M. J., Wackett L. P. 1998; The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180:1951–1954
    [Google Scholar]
  16. Eberhard W. G. 1990; Evolution in bacterial plasmids and levels of selection. Q Rev Biol 65:3–22 [CrossRef]
    [Google Scholar]
  17. Gordon D. M., Lee J. 1999; The genetic structure of enteric bacteria from Australian mammals. Microbiology 145:2673–2682
    [Google Scholar]
  18. Gotz A., Pukall R., Smit E., Tietze E., Prager R., Tschape H., van Elsas J. D., Smalla K. 1996; Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628
    [Google Scholar]
  19. Groves D. J. 1979; Interspecific relationships of antibiotic resistance in Staphylococcus sp.: isolation and comparison of plasmids determining tetracycline resistance in S. aureus and S. epidermidis. Can J Microbiol 25:1468–1475 [CrossRef]
    [Google Scholar]
  20. Guessouss M., Ben-Mahrez K., Belhadj C., Belhadj O. 1996; Characterization of the drug resistance plasmid R2418: restriction map and role of insertion and deletion in its evolution. Can J Microbiol 42:12–18 [CrossRef]
    [Google Scholar]
  21. Hawkey P. M. 2003; Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51 (suppl. 1:29–35 [CrossRef]
    [Google Scholar]
  22. Levin B. R. 1995; Conditions for the evolution of multiple antibiotic resistance plasmids: a theoretical and experimental excursion. In Population Genetics of Bacteria pp. 175–192Edited by Baumberg S. Cambridge/New York: Cambridge University Press;
    [Google Scholar]
  23. Levin B. R., Stewart F. M., Rice V. A. 1979; The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2:247–260 [CrossRef]
    [Google Scholar]
  24. Lindler L. E., Plano G. V., Burland V., Mayhew G. F., Blattner F. R. 1998; Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun 66:5731–5742
    [Google Scholar]
  25. Ling J. M., Shaw P. C., Kam K. M., Cheng A. F., French G. L. 1993; Molecular studies of plasmids of multiply-resistant Shigella spp. in Hong Kong. Epidemiol Infect 110:437–446 [CrossRef]
    [Google Scholar]
  26. Mantel N. 1967; The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220
    [Google Scholar]
  27. Martinez-Freijo P., Fluit A. C., Schmitz F. J., Verhoef J., Jones M. E. 1999; Many class I integrons comprise distinct stable structures occurring in different species of Enterobacteriaceae isolated from widespread geographic regions in Europe. Antimicrob Agents Chemother 43:686–689
    [Google Scholar]
  28. Mitsuhashi S., Hashimoto H., Iyobe S., Inoue M. 1977; Formation of conjugative drug resistance (R) plasmids. In DNA Insertion Elements, Plasmids, and Episomes pp. 139–146Edited by Bukhari A. I., Shapiro J. A., Adhya S. L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Neu H. C. 1992; The crisis in antibiotic resistance. Science 257:1064–1072 [CrossRef]
    [Google Scholar]
  30. Petit A., Gerbaud G., Sirot D., Courvalin P., Sirot J. 1990; Molecular epidemiology of TEM-3 (CTX-1) beta-lactamase. Antimicrob Agents Chemother 34:219–224 [CrossRef]
    [Google Scholar]
  31. Prentice M. B., James K. D., Parkhill J.13 other authors 2001; Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J Bacteriol 183:2586–2594 [CrossRef]
    [Google Scholar]
  32. Preston K. E., Graffunder E. M., Evans A. M., Venezia R. A. 2003; Survey of plasmid-associated genetic markers in enterobacteriaceae with reduced susceptibilities to cephalosporins. Antimicrob Agents Chemother 47:2179–2185 [CrossRef]
    [Google Scholar]
  33. Radstrom P., Swedberg G., Skold O. 1991; Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. Antimicrob Agents Chemother 35:1840–1848 [CrossRef]
    [Google Scholar]
  34. Riemmann C., Haas D. 1993; Mobilisation of chromosomes and non-conjugative plasmids by co-integrative mechanisms. In Bacterial Conjugation pp. 137–188Edited by Clewell D. B. New York: Plenum;
    [Google Scholar]
  35. Rohlf F. J. 1993 NSYS-PC: Numerical Taxonomy and Multivariate Analysis System New York: Exeter Software;
  36. Saksena N. K., Truffaut N. 1992; Cloning of tetracycline-resistance genes from various strains of Clostridium perfringens and expression in Escherichia coli. Can J Microbiol 38:215–221 [CrossRef]
    [Google Scholar]
  37. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schwarz S., Gregory P. D., Werckenthin C., Curnock S., Dyke K. G. 1996; A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. J Med Microbiol 45:57–63 [CrossRef]
    [Google Scholar]
  39. Selander R. K., Caugant D. A., Whittam T. S. 1987; Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1625–1648Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Sherley M., Gordon D. M., Collignon P. J. 2003; Species differences in plasmid carriage in the Enterobacteriaceae. Plasmid 49:79–85 [CrossRef]
    [Google Scholar]
  41. Sohail M., Dyke K. G. 1995; Sites for co-integration of large staphylococcal plasmids. Gene 162:63–68 [CrossRef]
    [Google Scholar]
  42. Sokal R. R., Rohlf F. J. 1969 Biometry: the Principles and Practice of Statistics in Biological Research San Francisco: W. H. Freeman;
  43. Tosini F., Visca P., Luzzi I., Dionisi A. M., Pezzella C., Petrucca A., Carattoli A. 1998; Class 1 integron-borne multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype typhimurium.. Antimicrob Agents Chemother 42:3053–3058
    [Google Scholar]
  44. Venkatesan M. M., Goldberg M. B., Rose D. J., Grotbeck E. J., Burland V., Blattner F. R. 2001; Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 69:3271–3285 [CrossRef]
    [Google Scholar]
  45. Watanabe T., Fukasawa T. 1960; Episome mediated transfer of drug resistance in Enterobacteriaceae. J Bacteriol 81:669–678
    [Google Scholar]
  46. White P. A., McIver C. J., Rawlinson W. D. 2001; Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2661 [CrossRef]
    [Google Scholar]
  47. Woodward M. J., Wray C., Ridha G. A., Walton J. R. 1990; Plasmid and chromosomal related toxin polymorphism of Escherichia coli serogroup O138; plasmid transfer and co-integration with pRP4. Med Microbiol 31:241–249 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26773-0
Loading
/content/journal/micro/10.1099/mic.0.26773-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error