1887

Abstract

The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were , , , and . Under conditions where they exhibit normal vitality, these organisms exclude DiBAC(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O-sensitive organisms and allows DiBAC(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26834-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501183.html?itemId=/content/journal/micro/10.1099/mic.0.26834-0&mimeType=html&fmt=ahah

References

  1. Biagini G. A., Suller M. T. E., Finlay B. J., Lloyd D. 1997a; Oxygen uptake and antioxidant responses of the free-living diplomonad Hexamita sp. J Eukaryot Microbiol 44:447–453 [CrossRef]
    [Google Scholar]
  2. Biagini G. A., Hayes A. J., Suller M. T. E., Winters C., Finlay B. J., Lloyd D. 1997b; Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629 [CrossRef]
    [Google Scholar]
  3. Biagini G. A., Lloyd D., Kirk K., Edwards M. R. 2000; The membrane potential of Giardia intestinalis. FEMS Microbiol Lett 192:153–157 [CrossRef]
    [Google Scholar]
  4. Biagini G. A., Park J. H., Lloyd D., Edwards M. R. 2001a; The antioxidant potential of pyruvate in the amitochondriate diplomonads Giardia intestinalis and Hexamita inflata. Microbiology 147:3359–3365
    [Google Scholar]
  5. Biagini G. A., Knodler L. A., Saliba K. J., Kirk K., Edwards M. R. 2001b; Na+-dependent pH regulation by the amitochondriate protozoan parasiteGiardia intestinalis. J Biol Chem 276:29157–29162 [CrossRef]
    [Google Scholar]
  6. Diamond L. S. 1957; The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490
    [Google Scholar]
  7. Dinsdale M. G., Lloyd D., Jarvis B. 1995; Yeast vitality during cider fermentation: two approaches to the measurement of membrane potential. J Inst Brew 101:453–458 [CrossRef]
    [Google Scholar]
  8. Ellis J. E., Cole D., Lloyd D. 1993a; Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis. Mol Biochem Parasitol 56:79–88
    [Google Scholar]
  9. Ellis J. E., Wingfield J. M., Cole D., Boreham P. F. L., Lloyd D. 1993b; Oxygen affinities of metronidazole-resistant and -sensitive stocks of Giardia intestinalis. Int J Parasitol 23:35–39 [CrossRef]
    [Google Scholar]
  10. Emri M., Balkay L., Kraszai Z., Tron L., Martin T. 1998; Wide applicability of a flow cytometric assay to measure absolute membrane potentials on a millivolt scale. Eur Biophys J 28:78–83 [CrossRef]
    [Google Scholar]
  11. Fenchel T., Finlay B. J. 1990; Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. J Gen Microbiol 136:1953–1959 [CrossRef]
    [Google Scholar]
  12. Fernandes P. D., Assreuy J. 1997; Role of nitric oxide and superoxide in Giardia lamblia killing. Braz J Med Biol Res 30:93–99
    [Google Scholar]
  13. Harold F. M. 1986 The Vital Force: a Study of Bioenergetics New York: W. H. Freeman;
  14. Humphreys M. J., Allman R., Lloyd D. 1994; Determination of the viability of Trichomonas vaginalis using flow cytometry. Cytometry 15:343–348 [CrossRef]
    [Google Scholar]
  15. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. 1979; Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121 [CrossRef]
    [Google Scholar]
  16. Kayahara M., Felderhoff U., Pocock J., Hughes M. N., Mehmet H. 1998; Nitric oxide (NO) and the nitrosonium cation (NO+) reduce mitochondrial membrane potential and trigger apoptosis in neuronal PC12 cells. Biochem Soc Trans 26:S340
    [Google Scholar]
  17. Keister D. B. 1983; Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488 [CrossRef]
    [Google Scholar]
  18. Krasznai Z., Marian T., Balkay L., Emri M., Tron L. 1995; Flow cytometric determination of absolute membrane potential of cells. J Photochem Photobiol B 28:93–99 [CrossRef]
    [Google Scholar]
  19. Lloyd D. 1993 Flow Cytometry in Microbiology London: Springer;
  20. Lloyd D., Hayes A. J. 1995; Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett 133:1–7 [CrossRef]
    [Google Scholar]
  21. Lloyd D., Williams J., Yarlett N., Williams A. G. 1982; Oxygen affinities of the hydrogenosome-containing protozoa Tritrichomonas foetus and Dasytricha ruminantium, and two aerobic protozoa, determined by bacterial bioluminescence. J Gen Microbiol 128:1019–1022
    [Google Scholar]
  22. Lloyd D., Harris J. C., Maroulis S., Biagini G. A., Wadley R. B., Turner M. P., Edwards M. R. 2000; The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology 146:3109–3118
    [Google Scholar]
  23. Lloyd D., Mason D. J., Suller M. T. E. 2001; Microbial infections. In Cytometric Analysis of Cell Phenotype and Function pp. 2982–3213Edited by McCarthy D. A., Macey M. G. Cambridge University Press;
    [Google Scholar]
  24. Lloyd D., Williams A. S., James C. J. 2002a; Nitrite inhibits hydrogen production and kills the cattle parasite Tritrichomonas foetus. J Appl Microbiol 93:492–496 [CrossRef]
    [Google Scholar]
  25. Lloyd D., Harris J. C., Biagini G. A.11 other authors 2002b; Oxygen homeodynamics in Giardia. In Giardia: the Cosmopolitan Parasite pp. 29–43Edited by Olson B. E. Olson M. E., Wallis P. M. Wallingford, Oxfordshire: CAB International;
    [Google Scholar]
  26. Lloyd D., Harris J. C., Maroulis S., Mitchell A., Hughes M. N., Wadley R. B., Edwards M. R. 2003a; Nitrosative stress induced cytotoxicity in Giardia intestinalis. J Appl Microbiol 95:576–583 [CrossRef]
    [Google Scholar]
  27. Lloyd D., Lemar K. M., Salgado L. E., Gould T. M., Murray D. B. 2003b; Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; a hypothesis. FEMS Yeast Res 3:333–339 [CrossRef]
    [Google Scholar]
  28. Mason D. 1994 The use of flow cytometry to rapidly estimate bacterial antibiotic sensitivity PhD thesis, University of Wales;
  29. Mason D. J., Allman R., Stark J. M., Lloyd D. 1994; Rapid estimation of bacterial antibiotic susceptibility with flow cytometry. J Microsc 176:8–16 [CrossRef]
    [Google Scholar]
  30. Midgley M. 1986; The phosphonium ion efflux system of Escherichia coli: relationship to the ethidium efflux system and energetic studies. J Gen Microbiol 132:3187–3193
    [Google Scholar]
  31. Mitchell P. 1979; Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159 [CrossRef]
    [Google Scholar]
  32. Morré D. J., Crane F. L., Sun I. L., Navas P. 1987; The role of ascorbate in biomembrane energetics. Ann N Y Acad Sci 498:153–171 [CrossRef]
    [Google Scholar]
  33. Novo D., Perlmutter N. G., Hunt R. H., Shapiro H. M. 1999; Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35:55–63 [CrossRef]
    [Google Scholar]
  34. Paget T. A., Jarroll E. L., Manning P., Lindmark D. G., Lloyd D. 1989; Respiration in the cysts and trophozoites of Giardia muris. J Gen Microbiol 13:145–154
    [Google Scholar]
  35. Ryu J.-S., Lloyd D. 1995; Cell cytotoxicity of sodium nitrite, sodium nitroprusside and Roussin's black salt against Trichomonas vaginalis. FEMS Microbiol Lett 130:183–188 [CrossRef]
    [Google Scholar]
  36. Scott J. A., Rabito C. A. 1988; Oxygen radicals and plasma membrane potential. Free Radic Biol Med 5:237–246 [CrossRef]
    [Google Scholar]
  37. Shapiro H. M. 2000; Membrane potential estimation by flow cytometry. Methods 21:271–279 [CrossRef]
    [Google Scholar]
  38. Smith J. C. 1990; Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochim Biophys Acta 1016:1–28 [CrossRef]
    [Google Scholar]
  39. Yarlett N., Yarlett N. C., Lloyd D. 1986; Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol Biochem Parasitol 19:111–116 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26834-0
Loading
/content/journal/micro/10.1099/mic.0.26834-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error