1887

Abstract

A family of plasmid-borne DNA fragments of different length, apparently inherited from an ancient plasmid, has been identified in the world population of environmental strains. These fragments, named PPFs (arental lasmid DNA ragments), were ≥99·8 % identical to each other in the common regions, and contained in their central region a variant of an aberrant mercury-resistance transposon (Tn ) that has lost its transposition genes. As a rule, recombinogenic elements were found at the breakpoints of identity between the different PPFs. Of these recombinogenic elements, a newly identified IS family element, a transposon, or a resolvase gene interrupted one end of the PPFs. At the opposite end, the breakpoint of some PPFs was mapped to the recombination point within, in each case, a different variant of a site (RS2), whilst in other PPFs, this end was eroded by insertion of a newly identified IS family element. On the basis of DNA sequence data, possible mechanisms of translocation of defective Tn -like elements via recombination events implicating the nearby (resolution) site and IS element are proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26844-0
2004-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500979.html?itemId=/content/journal/micro/10.1099/mic.0.26844-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. 1999; Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96:14043–14048 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Barkay T., Miller S. M., Summers A. O. 2003; Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384 [CrossRef]
    [Google Scholar]
  4. Bliska J. B., Benjamin H. W., Cozzarelli N. R. 1991; Mechanism of Tn3 resolvase recombination in vivo. J Biol Chem 266:2041–2047
    [Google Scholar]
  5. Bogdanova E. S., Mindlin S. Z., Kalyaeva E. S., Nikiforov V. G. 1988; The diversity of mercury reductases among mercury-resistant bacteria. FEBS Lett 234:280–282 [CrossRef]
    [Google Scholar]
  6. Bogdanova E., Minakhin L., Bass I., Volodin A., Hobman J. L., Nikiforov V. 2001; Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Res Microbiol 152:503–514 [CrossRef]
    [Google Scholar]
  7. Chang A. C., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156
    [Google Scholar]
  8. Craig N. L. 1996; Transposition. In Escherichia coli and Salmonella Typhimurium. Cellular and Molecular Biology, 2nd edn. pp. 2339–2362Edited by Neidhardt F.C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Dai L., Zimmerly S. 2002; Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res 30:1091–1102 [CrossRef]
    [Google Scholar]
  10. Danilevich V. N., Volozhantsev N. V., Volkovoi K. I., Stepanshin Yu. G. 1980; Isolation and characteristics of deletion mutants of thermosensitive plasmid pEG1. Genetika 16:1958–1966 (in Russian
    [Google Scholar]
  11. Eckhardt T. 1978; A rapid method for identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1:584–588 [CrossRef]
    [Google Scholar]
  12. Griffin H. G., Foster T. J., Silver S., Misra T. K. 1987; Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc Natl Acad Sci U S A 84:3112–3116 [CrossRef]
    [Google Scholar]
  13. Grinsted J., de la Cruz F., Altenbuchner J., Schmitt R. 1982; Complementation of transposition of tnpA mutants of Tn3, Tn21, Tn501, and Tn1721. Plasmid 8:276–286 [CrossRef]
    [Google Scholar]
  14. Grinsted J., De La Cruz F., Schmitt R. 1990; The Tn21 subgroup of bacterial transposable elements. Plasmid 24:163–189 [CrossRef]
    [Google Scholar]
  15. Guyer M. S., Reed R. R., Steitz J. A., Low K. B. 1981; Identification of a sex-factor-affinity site in E.coli as γδ. Cold Spring Harbor Symp Quant Biol 45:135–140 [CrossRef]
    [Google Scholar]
  16. Hacker J., Kaper J. B. 2000; Pathogenicity islands and evolution of microbes. Annu Rev Microbiol 54:641–679 [CrossRef]
    [Google Scholar]
  17. Hall R. M., Collis C. M. 1998; Antibiotic resistance in Gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updates 1:109–119 [CrossRef]
    [Google Scholar]
  18. Higgins D., Thompson J., Gibson T., Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  19. Hobman J. L., Brown N. L. 1997; Bacterial mercury resistance genes. In Metal Ions in Biological Systems vol. 34Mercury and its Effects on Environment and Biology pp. 527–567 Edited by Sigel H., Sigel A. New York: Marcel Dekker;
    [Google Scholar]
  20. Hobman J., Kholodii G., Nikiforov V., Ritchie D. A., Strike P., Yurieva O. 1994; The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 146:73–78 [CrossRef]
    [Google Scholar]
  21. Huang Ch.-Ch., Narita M., Yamagata T., Itoh Y., Endo G. 1999; Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234:361–369 [CrossRef]
    [Google Scholar]
  22. Iida S., Meyer J., Linder P., Goto N., Nakaya R., Reif H.-J., Arber W. 1982; The kanamycin resistance transposon Tn2680 derived from the R plasmid Rts1 and carried by phage P1 Km has flanking 0·8 kb long direct repeats. Plasmid 8:187–198 [CrossRef]
    [Google Scholar]
  23. Iida S., Mollet B., Meyer J., Arber W. 1984; Functional characterization of the prokaryotic mobile genetic element IS26. Mol Gen Genet 198:84–89 [CrossRef]
    [Google Scholar]
  24. Jobling M. G., Peters S. E., Ritchie D. A. 1988; Restriction pattern and polypeptide homology among plasmid-borne mercury resistance determinants. Plasmid 20:106–112 [CrossRef]
    [Google Scholar]
  25. Juni E. 1978; Genetics and physiology of Acinetobacter. Annu Rev Microbiol 32:349–371 [CrossRef]
    [Google Scholar]
  26. Kalyaeva E. S., Kholodii G. Ya., Bass I. A., Yurieva O. V., Nikiforov V. G., Gorlenko Zh. M. 2001; Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Russ J Genet 37:972–975 (translated from PMID: 11642118 [CrossRef]
    [Google Scholar]
  27. Khesin R. B., Karasyova E. V. 1984; Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol Gen Genet 197:280–285 [CrossRef]
    [Google Scholar]
  28. Kholodii G. 2001; The shuffling function of resolvases. Gene 269:121–130 [CrossRef]
    [Google Scholar]
  29. Kholodii G. Ya., Lomovskaya O. L., Mindlin S. Z., Yurieva O. V., Nikiforov V. G., Gorlenko Zh. M. 1993; Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid 30:303–308 [CrossRef]
    [Google Scholar]
  30. Kholodii G., Mindlin S., Bass I., Yurieva O., Minakhina S., Nikiforov V. 1995; Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17:1189–1200 [CrossRef]
    [Google Scholar]
  31. Kholodii G. Ya., Yurieva O. V., Mindlin S. Z., Bass I. A., Lomovskaya O. L., Kopteva A. V., Nikiforov V. G., Gorlenko Zh. M. 1997; Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651. Microbiology 143:2549–2556 [CrossRef]
    [Google Scholar]
  32. Kholodii G., Yurieva O., Mindlin S., Gorlenko Zh., Rybochkin V., Nikiforov V. 2000; Tn5044, a novel Tn3 family transposon coding for temperature sensitive mercury resistance. Res Microbiol 151:291–312 [CrossRef]
    [Google Scholar]
  33. Kholodii G., Gorlenko Zh., Mindlin S., Hobman J., Nikiforov V. 2002; Tn5041-like transposons: molecular diversity, evolutionary relationships and distribution of distinct variants in environmental bacteria. Microbiology 148:3569–3582
    [Google Scholar]
  34. Kumar S., Subramanian S. 2002; Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A 99:803–808 [CrossRef]
    [Google Scholar]
  35. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  36. Liebert C. A., Hall R. M., Summers A. O. 1999; Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522
    [Google Scholar]
  37. Liebert C. A., Watson A. L., Summers A. O. 2000; The quality of merC, a module of the mer mosaic. J Mol Evol 51:607–622 [CrossRef]
    [Google Scholar]
  38. Lomovskaya O. L., Nikiforov V. G. 1988; Nucleotide sequences of mercury resistance determinants in bacteria isolated from mercury mines: detection of a family of recombinant mercury transposons in plasmids from Acinetobacter species. Genetika 24:1539–1549 (in Russian
    [Google Scholar]
  39. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–744
    [Google Scholar]
  40. Mammeri H., Poirel L., Mangeney N., Nordmann P. 2003; Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams. Antimicrob Agents Chemother 47:1536–1542 [CrossRef]
    [Google Scholar]
  41. Martinez B., Tomkins J., Wackett L. P., Wing R., Sadowsky M. J. 2001; Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697 [CrossRef]
    [Google Scholar]
  42. Martínez-Abarca F., Toro N. 2000; Group II introns in the bacterial world. Mol Microbiol 38:917–926
    [Google Scholar]
  43. Mendiola M. V., Bernales I., de la Cruz F. 1994; Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci U S A 91:1922–1926 [CrossRef]
    [Google Scholar]
  44. Mindlin S. Z., Gorlenko Zh. M., Lomovskaya O. L., Bogdanova E. S., Kalyaeva E. S., Gragerov A. I., Nikiforov V. G., Khesin R. B. 1986; Acinetobacter plasmids responsible for the resistance to HgCl2: occurrence in different mercury deposits. Genetika 22:2684–2692 (in Russian
    [Google Scholar]
  45. Mindlin S. Z., Gorlenko Zh. M., Bass I. A., Khachikian N. A. 1990; Spontaneous transformation in mixed cultures of various types of Acinetobacter and during joint growth of Acinetobacter calcoaceticus with Escherichia coli and Pseudomonas aeruginosa. Genetika 26:1729–1739 (in Russian
    [Google Scholar]
  46. Mindlin S., Kholodii G., Gorlenko Zh.7 other authors 2001; Mercury resistance transposons of Gram-negative bacteria and their classification. Res Microbiol 152:811–822 [CrossRef]
    [Google Scholar]
  47. Mollet B., Iida S., Shepherd J., Arber W. 1983; Nucleotide sequence of IS26, a new prokaryotic mobile genetic element. Nucleic Acids Res 11:6319–6330 [CrossRef]
    [Google Scholar]
  48. Mollet B., Iida S., Arber W. 1985; Gene organization and target specificity of the prokaryotic mobile genetic element IS26. Mol Gen Genet 201:198–203 [CrossRef]
    [Google Scholar]
  49. Mötsch S., Schmitt R., Avila P., de la Cruz F., Ward E., Grinsted J. 1985; Junction sequences generated by ‘one-ended transposition’. Nucleic Acids Res 13:3335–3342 [CrossRef]
    [Google Scholar]
  50. Nakamura K., Silver S. 1994; Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl Environ Microbiol 60:4596–4599
    [Google Scholar]
  51. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
  52. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86 [CrossRef]
    [Google Scholar]
  53. Ochman H., Elwyn S., Moran N. A. 1999; Calibrating bacterial evolution. Proc Natl Acad Sci U S A 96:12638–12643 [CrossRef]
    [Google Scholar]
  54. Ogawa H. I., Tolle C. L., Summers A. O. 1984; Physical and genetic map of the organomercury resistance (Omr) and inorganic mercury resistance (Hgr) loci of the IncM plasmid R831b. Gene 32:311–320 [CrossRef]
    [Google Scholar]
  55. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  56. Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. 1997; Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262 [CrossRef]
    [Google Scholar]
  57. Osbourn S. E., Turner A. K., Grinsted J. 1995; Nucleotide sequence within Tn3926 confirms this as a Tn21-like transposable element and provides evidence for the origin of the mer operon carried by plasmid pKLH2. Plasmid 33:65–69 [CrossRef]
    [Google Scholar]
  58. Pansegrau W., Lanka E., Barth P. T.7 other authors 1994; Complete nucleotide sequence of Birmingham IncPα plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663 [CrossRef]
    [Google Scholar]
  59. Pearson A. J., Bruce K. D., Osborn A. M., Ritchie D. A., Strike P. 1996; Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes. Appl Environ Microbiol 62:2961–2965
    [Google Scholar]
  60. Petrova M. A., Mindlin S. Z., Gorlenko Zh. M., Kalyaeva E. S., Soina V. S., Bogdanova E. S. 2002; Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants. Genetika 38:1569–1574 (in Russian
    [Google Scholar]
  61. Polard P., Chandler M. 1995; Bacterial transposases and retroviral integrases. Mol Microbiol 15:13–23 [CrossRef]
    [Google Scholar]
  62. Recchia G. D., Hall R. M. 1995; Gene cassettes: a new class of mobile element. Microbiology 141:3015–3027 [CrossRef]
    [Google Scholar]
  63. Reniero D., Mozzon E., Galli E., Barbieri P. 1998; Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid pPB. Gene 208:37–42 [CrossRef]
    [Google Scholar]
  64. Rich S. M., Licht M. C., Hudson R. R., Ayala F. J. 1998; Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc Natl Acad Sci U S A 95:4425–4430 [CrossRef]
    [Google Scholar]
  65. Rinkel M., Hubert J.-C., Roux B., Lett M.-C. 1994; Transposon Tn5403, a mobilization-helper element. Complete nucleotide sequence and distribution in aquatic strains. FEMS Microbiol Ecol 15:89–95 [CrossRef]
    [Google Scholar]
  66. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  67. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  68. Sher A., Plakht I. 1988; Radiocarbon dating and problems of Pleistocene stratigraphy on the Northern USSR lowlands. Izv Akad Nauk SSSR, Geol Ser N8:17–31 (in Russian
    [Google Scholar]
  69. Sherratt D. 1989; Tn3 and related transposable elements: site-specific recombination and transposition. In Mobile DNA pp. 163–184Edited by Berg D. E., Howe M. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  70. Shi T., Reeves R. H., Gilichinsky D. A., Friedmann E. I. 1997; Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179 [CrossRef]
    [Google Scholar]
  71. Turlan C., Chandler M. 1995; IS1-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J 14:5410–5421
    [Google Scholar]
  72. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  73. Vorobyova E., Soina V., Gorlenko M., Minkovskaya N., Zalinova N., Mamukelashvili A., Gilichinsky D., Rivkina E., Vishnivetskaya T. 1997; The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:272–290
    [Google Scholar]
  74. Weinert T. A., Schaus N. A., Grindley N. D. 1983; Insertion sequence duplication in transpositional recombination. Science 222:755–765 [CrossRef]
    [Google Scholar]
  75. Yurieva O., Kholodii G., Minakhin L., Gorlenko Zh., Kalyaeva E., Mindlin S., Nikiforov V. 1997; Intercontinental spread of promiscuous mercury resistance transposons in environmental bacteria. Mol Microbiol 24:321–329 [CrossRef]
    [Google Scholar]
  76. Zharkikh A. A., Rzhetsky A. Yu., Morosov P. S., Sitnikova T. L., Krushkal J. S. 1991; vostorg: a package of microcomputer programs for sequence analysis and construction of phylogenetic trees. Gene 101:251–254 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26844-0
Loading
/content/journal/micro/10.1099/mic.0.26844-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error