1887

Abstract

The group includes insecticidal bacteria (), food-borne pathogens ( and ) and , the causative agent of anthrax. The precise number of rRNA operons in 12 strains of the group was determined. Most of the tested strains possess 13 operons and the tested psychrotolerant strains contain 14 operons, the highest number ever found in bacteria. The separate clustering of the tested psychrotolerant strains was confirmed by partial sequencing of several genes distributed over the chromosomes. Analysis of regions downstream of the 23S rRNA genes in the type strain ATCC 14579 indicates that the rRNA operons can be divided into two classes, I and II, consisting respectively of eight and five operons. Class II operons exhibit multiple tRNA genes downstream of the 5S rRNA gene and a putative promoter sequence in the 23S–5S intergenic region, suggesting that 5S rRNA and the downstream tRNA genes can be transcribed independently of the 16S and 23S genes. Similar observations were made in the recently sequenced genome of strain Ames. The existence of these distinct types of rRNA operons suggests an unknown mechanism for regulation of rRNA and tRNA synthesis potentially related to the pool of amino acids available for protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26870-0
2004-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500601.html?itemId=/content/journal/micro/10.1099/mic.0.26870-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Okstad O. A., Kolsto A. B., Lereclus D. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053 [CrossRef]
    [Google Scholar]
  2. Ankarloo J., Caugant D. A., Hansen B. M., Berg A., Kolsto A. B., Lovgren A. 2000; Genome stability of Bacillus thuringiensis subsp.israelensis isolates. Curr Microbiol 40:51–56 [CrossRef]
    [Google Scholar]
  3. Boschwitz H., Gofshtein-Gandman L., Halvorson H. O., Keynan A., Milner Y. 1991; The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168. J Gen Microbiol 137:1145–1153 [CrossRef]
    [Google Scholar]
  4. Bourque S. N., Valero J. R., Lavoie M. C., Levesque R. C. 1995; Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl Environ Microbiol 61:1623–1626
    [Google Scholar]
  5. Carlson C. R., Caugant D. A., Kolsto A. B. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725
    [Google Scholar]
  6. Carlson C. R., Johansen T., Kolsto A. B. 1996; The chromosome map of Bacillus thuringiensis subsp.canadensisHD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167 [CrossRef]
    [Google Scholar]
  7. Carranza S., Giribet G., Ribera C., Baguna Riutort M. 1996; Evidence that two types of 18S rDNA coexist in the genome of Dugesia(Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol 13:824–832 [CrossRef]
    [Google Scholar]
  8. Clark B. D. 1987 Thesis Ohio State University;
  9. Daffonchio D., Borin S., Frova G., Manachini P. L., Sorlini C. 1998; PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis [corrected]. Int J Syst Bacteriol 48:107–116 [CrossRef]
    [Google Scholar]
  10. Daffonchio D., Cherif A., Borin S. 2000; Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the “Bacillus cereus group”. Appl Environ Microbiol 66:5460–5468 [CrossRef]
    [Google Scholar]
  11. de Barjac H., Bonnefoi A. 1972; Attempted biochemical classification of 64 Bacillus strains of groups 2 and 3 representing 11 different species. Ann Inst Pasteur 122:463–473
    [Google Scholar]
  12. Dear S., Staden R. 1991; A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19:3907–3911 [CrossRef]
    [Google Scholar]
  13. Dulmage H. T. 1970; Production of the spore-delta-endotoxin complex by variants of Bacillus thuringiensis in two fermentation media. J Invertebr Pathol 16:385–389 [CrossRef]
    [Google Scholar]
  14. Frankland G. C., Frankland P. F. 1887; Studies on some new micro-organisms from air. Philos Trans R Soc Lond B Biol Sci 173:257–287
    [Google Scholar]
  15. Granum P. E. 1994; Bacillus cereus and its toxins. Soc Appl Bacteriol Symp Ser 23:61S–66S
    [Google Scholar]
  16. Granum P. E., Lund T. 1997; Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228 [CrossRef]
    [Google Scholar]
  17. Harrell L. J., Andersen G. L., Wilson K. H. 1995; Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850
    [Google Scholar]
  18. Helgason E., Caugant D. A., Lecadet M. M., Chen Y., Mahillon J., Lovgren A., Hegna I., Kvaloy K., Kolsto A. B. 1998; Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87 [CrossRef]
    [Google Scholar]
  19. Helgason E., Caugant D. A., Olsen I., Kolsto A. B. 2000; Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622
    [Google Scholar]
  20. Hofte H., Whiteley H. R. 1989; Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255
    [Google Scholar]
  21. Ivanova N., Sorokin A., Anderson I.20 other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91 [CrossRef]
    [Google Scholar]
  22. Jadamus A., Vahjen W., Simon O. 2001; Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch Tierernahr 54:1–17 [CrossRef]
    [Google Scholar]
  23. Jadamus A., Vahjen W., Schafer K., Simon O. 2002; Influence of the probiotic strain Bacillus cereus var. toyoi on the development of enterobacterial growth and on selected parameters of bacterial metabolism in digesta samples of piglets. J Anim Physiol Anim Nutr 86:42–54 [CrossRef]
    [Google Scholar]
  24. Johansen T., Carlson C. R., Kolsto A. B. 1996; Variable numbers of rRNA gene operons in Bacillus cereus strains. FEMS Microbiol Lett 136:325–328 [CrossRef]
    [Google Scholar]
  25. Kotiranta A., Haapasalo M., Kari K., Kerosuo E., Olsen I., Sorsa T., Meurman J. H., Lounatmaa K. 1998; Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect Immun 66:4895–4902
    [Google Scholar]
  26. Kotiranta A., Lounatmaa K., Haapasalo M. 2000; Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198 [CrossRef]
    [Google Scholar]
  27. Lechner S., Mayr R., Francis K. P., Pruss B. M., Kaplan T., Wiessner-Gunkel E., Stewart G. S., Scherer S. 1998; Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382 [CrossRef]
    [Google Scholar]
  28. Liefting L. W., Andersen M. T., Beever R. E., Gardner R. C., Forster R. L. 1996; Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma. Appl Environ Microbiol 62:3133–3139
    [Google Scholar]
  29. Lund T., De Buyser M. L., Granum P. E. 2000; A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38:254–261 [CrossRef]
    [Google Scholar]
  30. Maden B. E., Dent C. L., Farrell T. E., Garde J., McCallum F. S., Wakeman J. A. 1987; Clones of human ribosomal DNA containing the complete 18S-rRNA and 28S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246:519–527
    [Google Scholar]
  31. Margulis L., Jorgensen J. Z., Dolan S., Kolchinsky R., Rainey F. A., Lo S. C. 1998; The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci U S A 95:1236–1241 [CrossRef]
    [Google Scholar]
  32. Mietke H., Beer W., Voigt W., Zucker B., Reissbrodt R. 2000; Characterization and differentiation of probiotic Bacillus cereus isolates from feeds. In FT-IR Spectroscopy in Microbiological and Medical Diagnostic Berlin: Robert Koch-Institute;
    [Google Scholar]
  33. Mylvaganam S., Dennis P. P. 1992; Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130:399–410
    [Google Scholar]
  34. Ohnishi M., Murata T., Nakayama K.8 other authors 2000; Comparative analysis of the whole set of rRNA operons between an enterohemorrhagic Escherichia coli O157 : H7 Sakai strain and an Escherichia coli K-12 strain MG1655. Syst Appl Microbiol 23:315–324 [CrossRef]
    [Google Scholar]
  35. Okstad O. A., Gominet M., Purnelle B., Rose M., Lereclus D., Kolsto A. B. 1999; Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:3129–3138
    [Google Scholar]
  36. Patra G., Fouet A., Vaissaire J., Guesdon J. L., Mock M. 2002; Variation in rRNA operon number as revealed by ribotyping of Bacillus anthracis strains. Res Microbiol 153:139–148 [CrossRef]
    [Google Scholar]
  37. Perriere G., Gouy M. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  38. Priest F. G., Kaji D. A., Rosato Y. B., Canhos V. P. 1994; Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology 140:1015–1022 [CrossRef]
    [Google Scholar]
  39. Pruss B. M., Scherer S., Francis K. P., von Stetten F. 1999; Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181:2624–2630
    [Google Scholar]
  40. Read T. D., Peterson S. N., Tourasse N.49 other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86 [CrossRef]
    [Google Scholar]
  41. Reischl U., Feldmann K., Naumann L., Gaugler B. J., Ninet B., Hirschel B., Emler S. 1998; 16S rRNA sequence diversity in Mycobacterium celatum strains caused by presence of two different copies of 16S rRNA gene. J Clin Microbiol 36:1761–1764
    [Google Scholar]
  42. Ronner U., Husmark U., Henriksson A. 1990; Adhesion of Bacillus spores in relation to hydrophobicity. J Appl Bacteriol 69:550–556 [CrossRef]
    [Google Scholar]
  43. Salamitou S., Ramisse F., Brehelin M., Bourguet D., Gilois N., Gominet M., Hernandez E., Lereclus D. 2000; The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:2825–2832
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. 1998; Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806
    [Google Scholar]
  46. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  47. Shimizu T., Ohshima S., Ohtani K., Hoshino K., Honjo K., Hayashi H. 2001; Sequence heterogeneity of the ten rRNA operons in Clostridium perfringens. Syst Appl Microbiol 24:149–156 [CrossRef]
    [Google Scholar]
  48. Stabb E. V., Jacobson L. M., Handelsman J. 1994; Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412
    [Google Scholar]
  49. Stenfors L. P., Mayr R., Scherer S., Granum P. E. 2002; Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215:47–51 [CrossRef]
    [Google Scholar]
  50. Temeyer K. B. 1984; Larvicidal activity of Bacillus thuringiensis subsp.israelensis in the dipteran Haematobia irritans. Appl Environ Microbiol 47:952–955
    [Google Scholar]
  51. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  52. Ticknor L. O., Kolsto A. B., Hill K. K., Keim P., Laker M. T., Tonks M., Jackson P. J. 2001; Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67:4863–4873 [CrossRef]
    [Google Scholar]
  53. Vilas-Boas G., Sanchis V., Lereclus D., Lemos M. V., Bourguet D. 2002; Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68:1414–1424 [CrossRef]
    [Google Scholar]
  54. Yap W. H., Zhang Z., Wang Y. 1999; Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26870-0
Loading
/content/journal/micro/10.1099/mic.0.26870-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error