1887

Abstract

Two-dimensional gel electrophoretic analysis of the proteome of grown at a steady state in a glucose-limited anaerobic continuous culture revealed a number of proteins that were differentially expressed when the growth pH was lowered from pH 7·0 to pH 5·0. Changes in the expression of metabolic proteins were generally limited to three biochemical pathways: glycolysis, alternative acid production and branched-chain amino acid biosynthesis. The relative level of expression of protein spots representing all of the enzymes associated with the Embden–Meyerhof–Parnas pathway, and all but one of the enzymes involved in the major alternative acid fermentation pathways of , was identified and measured. Proteome data, in conjunction with end-product and cell-yield analyses, were consistent with a phenotypic change that allowed to proliferate at low pH by expending energy to extrude excess H from the cell, while minimizing the detrimental effects that result from the uncoupling of carbon flux from catabolism and the consequent imbalance in NADH and pyruvate production. The changes in enzyme levels were consistent with a reduction in the formation of the strongest acid, formic acid, which was a consequence of the diversion of pyruvate to both lactate and branched-chain amino acid production when was cultivated in an acidic environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26888-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501353.html?itemId=/content/journal/micro/10.1099/mic.0.26888-0&mimeType=html&fmt=ahah

References

  1. Abbe K., Yamada T. 1982; Purification and properties of pyruvate kinase from Streptococcus mutans. J Bacteriol 149:299–305
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E. 16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  3. Belli W. A., Marquis R. E. 1991; Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138
    [Google Scholar]
  4. Bender G. R., Sutton S. V. W., Marquis R. E. 1986; Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53:331–338
    [Google Scholar]
  5. Boyd D. A., Cvitkovitch D. G., Hamilton I. R. 1995; Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622–2627
    [Google Scholar]
  6. Brown A. T., Wittenberger C. L. 1971a; The occurrence of multiple glyceraldehyde-3-phosphate dehydrogenases in cariogenic streptococci. Biochem Biophys Res Commun 43:217–224 [CrossRef]
    [Google Scholar]
  7. Brown A. T., Wittenberger C. L. 1971b; Mechanism for regulating the distribution of glucose between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. J Bacteriol 106:456–467
    [Google Scholar]
  8. Buckley N. D., Hamilton I. R. 1994; Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system. Microbiology 140:2639–2648 [CrossRef]
    [Google Scholar]
  9. Bunick F. J., Kashet S. 1981; Enolases from fluoride-sensitive and fluoride-resistant streptococci. Infect Immun 34:856–863
    [Google Scholar]
  10. Carlsson J., Griffith C. J. 1974; Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19:1105–1109 [CrossRef]
    [Google Scholar]
  11. Carlsson J., Hamilton I. R. 1996; Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis. Oral Microbiol Immunol 11:412–419 [CrossRef]
    [Google Scholar]
  12. Carlsson J., Kujala U., Edlund M. B. 1985; Pyruvate dehydrogenase activity in Streptococcus mutans. Infect Immun 49:674–678
    [Google Scholar]
  13. Chia J.-S., Lee Y.-Y., Huang P.-T., Chen J.-Y. 2001; Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun 69:2493–2501 [CrossRef]
    [Google Scholar]
  14. Cohen S. A. 2001; Amino acid analysis using precolumn derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol 159:39–47
    [Google Scholar]
  15. Cohen S. A., DeAntonis K. M. 1994; Applications of amino acid analysis derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate: analysis of feed grains, intravenous solutions and glycoproteins. J Chromatogr 661:25–34
    [Google Scholar]
  16. Cohen S. A., Michaud D. P. 1993; Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem 211:279–287 [CrossRef]
    [Google Scholar]
  17. Crow V. L., Wittenberger C. L. 1979; Separation and properties of NAD- and NADP-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans. J Biol Chem 254:1134–1142
    [Google Scholar]
  18. Cvitkovitch D. G., Boyd D. A., Thevenot T., Hamilton I. R. 1995; Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. J Bacteriol 177:2251–2258
    [Google Scholar]
  19. Dashper S. G., Reynolds E. C. 1990; Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutans. Ingbritt. J Bacteriol 172:556–563
    [Google Scholar]
  20. Dashper S. G., Reynolds E. C. 1992; pH regulation by Streptococcus mutans. J Dent Res 71:1159–1165 [CrossRef]
    [Google Scholar]
  21. Dashper S. G., Reynolds E. C. 1993; Branched-chain amino acid transport in Streptococcus mutans. Ingbritt. Oral Microbiol Immunol 8:167–171 [CrossRef]
    [Google Scholar]
  22. DiPersio J. R., Mattingly S. J., Higgins M. L., Shockman G. D. 1974; Measurement of intracellular iodophilic polysaccharide in two cariogenic strains of Streptococcus mutans by cytochemical and chemical methods. Infect Immun 10:597–604
    [Google Scholar]
  23. Ellwood D. C., Phipps P. J., Hamilton I. R. 1979; Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Infect Immun 23:224–231
    [Google Scholar]
  24. Garault P., Letort C., Juillard V., Monnet V. 2000; Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl Environ Microbiol 66:5128–5133 [CrossRef]
    [Google Scholar]
  25. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384
    [Google Scholar]
  26. Hamilton I. R. 1984; Effects of changing environment on sugar transport and metabolism by oral bacteria. In Sugar Transport and Metabolism in Gram-Positive Bacteria pp. 94–133Edited by Reizer J., Peterkofsky A. Chichester: Ellis Harwood;
    [Google Scholar]
  27. Hamilton I. R. 1990; Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture. Oral Microbiol Immuol 5:280–287
    [Google Scholar]
  28. Hamilton I. R., Buckley N. D. 1991; Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immun 6:65–71 [CrossRef]
    [Google Scholar]
  29. Hamilton I. R., St Martin E. J. 1982; Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate : sugar phosphotransferase activity. Infect Immun 36:567–575
    [Google Scholar]
  30. Harper D. S., Loesche W. J. 1984; Growth and acid tolerance of human dental plaque bacteria. Arch Oral Biol 10:843–848
    [Google Scholar]
  31. Harty D. W. S., Handley P. S. 1988; Fermentation products, amino acid utilization, maintenance energies and growth yields for the fibrillar Streptococcus salivarius HB and a non-fibrillar mutant HB-B grown in continuous culture under glucose limitation. J Appl Bacteriol 65:143–152 [CrossRef]
    [Google Scholar]
  32. Iwami Y., Yamada T. 1980; Rate-limiting steps of the glycolytic pathway in the oral bacteria Streptococcus mutans and Streptococcus sanguis and the influence of acidic pH on the glucose metabolism. Arch Oral Biol 25:163–169 [CrossRef]
    [Google Scholar]
  33. Iwami Y., Abbe K., Takahashi-Abbe S., Yamada T. 1992; Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol Immunol 7:304–308 [CrossRef]
    [Google Scholar]
  34. Jacques N. A., Hardy L., Knox K. W., Wicken A. J. 1979; Effect of growth conditions on the formation of extracellular lipoteichoic acid by Streptococcus mutans BHT. Infect Immun 25:75–84
    [Google Scholar]
  35. Len A. C. L., Cordwell S. J., Harty D. W. S., Jacques N. A. 2003; Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics 3:627–646 [CrossRef]
    [Google Scholar]
  36. Len A. C. L., Harty D. W. S., Jacques N. A. 2004; Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150:1339–1351 [CrossRef]
    [Google Scholar]
  37. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  38. Miyagi A., Ohta H., Kodama T., Fukui K., Kato K., Shimono T. 1994; Metabolic and energetic aspects of the growth response of Streptococcus rattus to environmental acidification in anaerobic continuous culture. Microbiology 140:1945–1952 [CrossRef]
    [Google Scholar]
  39. Néron S., Vadeboncoeur C. 1987; Two functionally different glucose phosphotransferase transport systems in Streptococcus mutans and Streptococcus sobrinus. Oral Microbiol Immunol 2:171–177 [CrossRef]
    [Google Scholar]
  40. Pitty L. J., Jacques N. A. 1989; Dissimilar effects of Na+ and K+ on the promotion of glucosyltransferase secretion in Streptococcus salivarius. J Gen Microbiol 135:1431–1439
    [Google Scholar]
  41. Porter E. V., Chassey B. M., Holmlund C. E. 1982; Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells. Biochim Biophys Acta 709:178–186 [CrossRef]
    [Google Scholar]
  42. Quivey R. G., Jr, Kuhnert W. L., Hahn K. 2001; Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12:301–314 [CrossRef]
    [Google Scholar]
  43. Schleifer K. H., Kilpper-Bälz R. 1987; Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–19 [CrossRef]
    [Google Scholar]
  44. Sissons C. H., Cutress T. W., Hoffman M. P., Wakefield J. S. 1991; A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res 70:1409–1416 [CrossRef]
    [Google Scholar]
  45. Smith A. J., Quivey R. G. Jr, Faustoferri R. C. 1996; Cloning and nucleotide sequence analysis of the Streptococcus mutans membrane-bound, proton-translocating ATPase operon. Gene 183:87–96 [CrossRef]
    [Google Scholar]
  46. Svensäter G., Sjögreen B., Hamilton I. R. 2000; Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146:107–117
    [Google Scholar]
  47. Takahashi S., Abbe K., Yamada T. 1982; Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol 149:1034–1040
    [Google Scholar]
  48. Tao L., MacAlister T. J., Tanzer J. M. 1993; Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res 72:1032–1039 [CrossRef]
    [Google Scholar]
  49. Thornalley P. J. 1996; Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification – a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27:565–573 [CrossRef]
    [Google Scholar]
  50. Vadeboncoeur C. 1984; Structure and properties of the phosphoenolpyruvate : glucose phosphotransferase system of oral streptococci. Can J Microbiol 30:495–502 [CrossRef]
    [Google Scholar]
  51. Vadeboncoeur C., St Martin S., Brochu D., Hamilton I. R. 1991; Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate : sugar phosphotransferase system in Streptococcus mutans Ingbritt. Infect Immun 59:900–906
    [Google Scholar]
  52. van Houte J. 1994; Role of micro-organisms in caries etiology. J Dent Res 73:672–681
    [Google Scholar]
  53. van Ruyven F. O., Lingstrom P., van Houte J., Kent R. 2000; Relationship among mutans streptococci, “low-pH” bacteria, and iodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res 79:778–784 [CrossRef]
    [Google Scholar]
  54. Wilkins J. C., Homer K., Beighton D. 2001; Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 67:3396–3405 [CrossRef]
    [Google Scholar]
  55. Wilkins J. C., Homer K. A., Beighton D. 2002; Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390 [CrossRef]
    [Google Scholar]
  56. Yamada T. 1987; Regulation of glycolysis in streptococci. In Sugar Transport and Metabolism in Gram-Positive Bacteria pp. 69–93Edited by Reizer J., Peterkofsky A. Chichester: Ellis Harwood;
    [Google Scholar]
  57. Yamada T., Carlsson J. 1975a; Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124:55–61
    [Google Scholar]
  58. Yamada T., Carlsson J. 1975b; Glucose-6-phosphate-dependent pyruvate kinase in Streptococcus mutans. J Bacteriol 124:562–563
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26888-0
Loading
/content/journal/micro/10.1099/mic.0.26888-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error