1887

Abstract

Sulfur metabolism has been implicated in the virulence, antibiotic resistance and anti-oxidant defence of . Despite its human disease relevance, sulfur metabolism in mycobacteria has not yet been fully characterized. ATP sulfurylase catalyses the synthesis of activated sulfate (adenosine 5′-phosphosulfate, APS), the first step in the reductive assimilation of sulfate. Expression of the gene, predicted to encode the adenylyl-transferase subunit of ATP sulfurylase, is upregulated by the bacilli inside its preferred host, the macrophage. This study demonstrates that and orthologues exist in and constitute an operon whose expression is induced by sulfur limitation and repressed by the presence of cysteine, a major end-product of sulfur assimilation. The genes are also induced upon exposure to oxidative stress, suggesting regulation of sulfur assimilation by in response to toxic oxidants. To ensure that the operon encoded the activities predicted by its primary sequence, and to begin to characterize the products of the operon, they were expressed in , purified to homogeneity, and tested for their catalytic activities. The CysD and CysNC proteins were shown to form a multifunctional enzyme complex that exhibits the three linked catalytic activities that constitute the sulfate activation pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26894-0
2004-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501681.html?itemId=/content/journal/micro/10.1099/mic.0.26894-0&mimeType=html&fmt=ahah

References

  1. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and expression profiling. Mol Microbiol 43:717–731 [CrossRef]
    [Google Scholar]
  2. Bogdan J. A., Nazario-Larrieu J., Sarwar J., Alexander P., Blake M. S. 2001; Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine. Infect Immun 69:6823–6830 [CrossRef]
    [Google Scholar]
  3. Britton W. J., Roche P. W., Winter N. 1994; Mechanisms of persistence of mycobacteria. Trends Microbiol 2:284–288 [CrossRef]
    [Google Scholar]
  4. Buchmeier N. A., Newton G. L., Koledin T., Fahey R. C. 2003; Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47:1723–1732 [CrossRef]
    [Google Scholar]
  5. Camacho L. R., Constant P., Raynaud C., Triccas J. A., Gicquel B., Guilhot C., Lanéelle M. A., Daffé M. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854 [CrossRef]
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  7. Falcone V., Bassey E., Collins F., Jacobs W. Jr. 1995; The immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiology 141:1239–1245 [CrossRef]
    [Google Scholar]
  8. Goren M. B. 1970; Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta 210:116–126 [CrossRef]
    [Google Scholar]
  9. Goren M. B., Armstrong J. A., D'Arcy Hart P., Young M. R. 1976; Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 73:2510–2514 [CrossRef]
    [Google Scholar]
  10. Hummerjohann J., Kuttel E., Quadroni M., Ragaller J., Leisinger T., Kertesz M. A. 1998; Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144:1375–1386 [CrossRef]
    [Google Scholar]
  11. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A. 1968; The control of sulphate reduction in Escherichia coli by O-acetyl-l-serine. Biochem J 107:51–53
    [Google Scholar]
  12. Lestrate P., Delrue R. M., Danese I.7 other authors 2000; Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38:543–551 [CrossRef]
    [Google Scholar]
  13. Leyh T. S. 1993; The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol 28:515–542 [CrossRef]
    [Google Scholar]
  14. Leyh T. S., Suo Y. 1992; GTPase-mediated activation of ATP sulfurylase. J Biol Chem 267:542–545
    [Google Scholar]
  15. Liu C., Martin E., Leyh T. S. 1994; GTPase activation of ATP sulfurylase: the mechanism. Biochemistry 33:2042–2047 [CrossRef]
    [Google Scholar]
  16. Middlebrook G., Coleman C. M., Schaefer W. B. 1959; Sulfolipids from virulent tubercle bacilli. Proc Natl Acad Sci U S A 45:1801–1804 [CrossRef]
    [Google Scholar]
  17. Pabst M. J., Gross J. M., Bronza J. P., Goren M. B. 1988; Inhibition of macrophage priming by sulfatide of Mycobacterium tuberculosis. J Immunol 140:634–640
    [Google Scholar]
  18. Rawat M., Newton G. L., Ko M., Martinez G. J., Fahey R. C., Av-Gay Y. 2002; Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46:3348–3355 [CrossRef]
    [Google Scholar]
  19. Rousseau C., Turner O. C., Rush E.7 other authors 2003; Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect Immun 71:4684–4690 [CrossRef]
    [Google Scholar]
  20. Satishchandran C., Markham G. D. 1989; Adenosine-5′-phosphosulfate kinase from Escherichia coli K12. Purification, characterization, and identification of a phosphorylated enzyme intermediate. J Biol Chem 264:15012–15021
    [Google Scholar]
  21. Schwedock J. S., Liu C., Leyh T. S., Long S. R. 1994; Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol 176:7055–7064
    [Google Scholar]
  22. Triccas J. A., Gicquel B. 2000; Life on the inside: probing Mycobacterium tuberculosis gene expression during infection. Immunol Cell Biol 78:311–317 [CrossRef]
    [Google Scholar]
  23. Triccas J. A., Gicquel B. 2001; Analysis of stress- and host cell-induced expression of the Mycobacterium tuberculosis inorganic pyrophosphatase. BMC Microbiol 1:3 [CrossRef]
    [Google Scholar]
  24. Triccas J. A., Berthet F. X., Pelicic V., Gicquel B. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:2923–2930
    [Google Scholar]
  25. Wang R., Liu C., Leyh T. S. 1995; Allosteric regulation of the ATP sulfurylase associated GTPase. Biochemistry 34:490–495 [CrossRef]
    [Google Scholar]
  26. Williams S. J., Senaratne R. H., Mougous J. D., Riley L. W., Bertozzi C. R. 2002; 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 277:32606–32615 [CrossRef]
    [Google Scholar]
  27. Zhang H., Varlamova O., Vargas F. M., Falany C. N., Leyh T. S., Varmalova O. 1998; Sulfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem 273:10888–10892 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26894-0
Loading
/content/journal/micro/10.1099/mic.0.26894-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error